In this paper, we introduce the directional Pinsker algebra, and construct a skew product to study it. As applications, we show that (i) if a -system with positive directional measure-theoretic entropy then it is multivariant directional mean Li–Yorke chaotic along the corresponding direction; (ii) for any ergodic measure on a -system, the intersection of the set of directional measure-theoretic entropy tuples with the set of directional asymptotic tuples is dense in the set of directional measure-theoretic entropy tuples.
REFERENCES
1.
Abramov
, L.
, and Rokhlin
, V. A.
, “The entropy of a skew product of measure-preserving transformations
,” Am. Math. Soc. Transl.
48
, 225
–245
(1965
).2.
Blanchard
, F.
, “A disjointness theorem involving topological entropy
,” Bull. Soc. Math. Fr.
121
(4
), 465
–478
(1993
).3.
Blanchard
, F.
, Glasner
, E.
, Kolyada
, S.
, and Maass
, A.
, “On Li–Yorke pairs
,” J. Reine Angew. Math.
2002
, 51
–68
.4.
Blanchard
, F.
, Host
, B.
, Maass
, A.
, Martinez
, S.
, and Rudolph
, D. J.
, “Entropy pairs for a measure
,” Ergodic Theory Dyn. Syst.
15
(4
), 621
–632
(1995
).5.
Broderick
, R.
, Cyr
, V.
, and Kra
, B.
, “Complexity and directional entropy in two dimensions
,” Isr. J. Math.
215
(1
), 135
–162
(2016
).6.
Danilenko
, A. I.
, “Directional recurrence and directional rigidity for infinite measure preserving actions of nilpotent lattices
,” Ergodic Theory Dyn. Syst.
37
(6
), 1841
–1861
(2017
).7.
Downarowicz
, T.
, “Positive topological entropy implies chaos DC2
,” Proc. Am. Math. Soc.
142
(1
), 137
–149
(2013
).8.
Einsiedler
, M.
, and Ward
, T.
, Ergodic Theory With a View Towards Number Theory
, Graduate Texts in Mathematics
(Springer-Verlag London, Ltd.
, London
, 2011
), Vol. 259
.9.
E.
Glasner
, Ergodic Theory via Joinings, Vol. 101 of Mathematical Surveys and Monographs
(American Mathematical Society
, Providence, RI
, 2003
).10.
Huang
, W.
, and Jin
, L.
, “Stable sets and mean Li–Yorke chaos in positive entropy actions of bi-orderable amenable groups
,” Ergodic Theory Dyn. Syst.
36
(8
), 2482
–2497
(2016
).11.
Huang
, W.
, Li
, J.
, and Ye
, X.
, “Stable sets and mean Li–Yorke chaos in positive entropy systems
,” J. Funct. Anal.
266
(6
), 3377
–3394
(2014
).12.
Huang
, W.
, Li
, J.
, and Ye
, X.
, “Positive entropy implies chaos along any infinite sequence
,” Trans. Moscow Math. Soc.
82
, 1
–14
(2022
).13.
Huang
, W.
, and Ye
, X.
, “A local variational relation and applications
,” Isr. J. Math.
151
, 237
–279
(2006
).14.
Kerr
, D.
, and Li
, H.
, “Independence in topological and C*-dynamics
,” Math. Ann.
338
(4
), 869
–926
(2007
).15.
Kifer
, Y.
, and Liu
, P.-D.
, “Random dynamics
,” Handbook of Dynamical Systems
(Elsevier B. V.
, Amsterdam
, 2006
), Vol. 1B
, pp. 379
–499
.16.
Li
, J.
, and Qiao
, Y.
, “Mean Li–Yorke chaos along some good sequences
,” Monatsh. Math
186
(1
), 153
–173
(2018
).17.
Li
, J.
, and Ye
, X. D.
, “Recent development of chaos theory in topological dynamics
,” Acta Math. Sin.
32
(1
), 83
–114
(2016
).18.
Li
, W.
, Packard
, N. H.
, and Langton
, C. G.
, “Transition phenomena in cellular automata rule space
,” Physica D
45
(1–3
), 77
–94
(1990
).19.
Liu
, C.
, Xiao
, R.
, and Xu
, L.
, “Pinsker σ-algebra character and mean Li–Yorke chaos
,” J. Dyn. Diff. Equ.
(2024
).20.
Liu
, C.
and Xu
, L.
, “Directional Kronecker algebra for q-actions
,” Ergodic Theory Dyn. Syst.
43
(4
), 1324
–1350
(2023
).21.
Milnor
, J.
, “Directional entropies of cellular automaton-maps
,” in Disordered Systems and Biological Organization (Les Houches, 1985), Vol. 20 of NATO Adv. Sci. Inst. Ser. F: Comput. Systems Sci.
(Springer
, Berlin
, 1986
), pp. 113
–115
.22.
Milnor
, J.
, “On the entropy geometry of cellular automata
,” Complex Sys.
2
(3
), 357
–385
(1988
).23.
Park
, K. K.
, “Continuity of directional entropy for a class of Z2-actions
,” J. Korean Math. Soc.
32
(3
), 573
–582
(1995
).24.
Park
, K. K.
, “Entropy of a skew product with a -action
,” Pac. J. Math.
172
(1
), 227
–241
(1996
).25.
Park
, K. K.
, “On directional entropy functions
,” Isr. J. Math.
113
, 243
–267
(1999
).26.
Park
, K. K.
, and Lee
, U.
, “Entropy pairs of 2 and their directional properties
,” Stud. Math.
165
(3
), 255
–274
(2004
).27.
Petersen
, K.
, Ergodic Theory, Vol. 2 of Cambridge Studies in Advanced Mathematics
(Cambridge University Press
, Cambridge
, 1983
).28.
Robinson
, Jr., E. A.
and Şahin
, A. A.
, “Rank-one d actions and directional entropy
,” Ergodic Theory Dynam. Systems
31
, 1
(2011
), 285
–299
.29.
Vichniac
, G. Y.
, “Simulating physics with cellular automata
,” Physica D
10
(1–2
), 96
–116
(1984
).30.
Walters
, P.
, An Introduction to Ergodic Theory
, Graduate Texts in Mathematics
(Springer-Verlag
, New York, Berlin
, 1982
), Vol. 79
.31.
Zhu
, Y.
, “A note on two types of Lyapunov exponents and entropies for k-actions
,” J. Math. Anal. Appl.
461
(1
), 38
–50
(2018
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.