In this paper, we introduce the directional Pinsker algebra, and construct a skew product to study it. As applications, we show that (i) if a Z2-system with positive directional measure-theoretic entropy then it is multivariant directional mean Li–Yorke chaotic along the corresponding direction; (ii) for any ergodic measure on a Z2-system, the intersection of the set of directional measure-theoretic entropy tuples with the set of directional asymptotic tuples is dense in the set of directional measure-theoretic entropy tuples.

1.
Abramov
,
L.
, and
Rokhlin
,
V. A.
, “
The entropy of a skew product of measure-preserving transformations
,”
Am. Math. Soc. Transl.
48
,
225
245
(
1965
).
2.
Blanchard
,
F.
, “
A disjointness theorem involving topological entropy
,”
Bull. Soc. Math. Fr.
121
(
4
),
465
478
(
1993
).
3.
Blanchard
,
F.
,
Glasner
,
E.
,
Kolyada
,
S.
, and
Maass
,
A.
, “
On Li–Yorke pairs
,”
J. Reine Angew. Math.
2002
,
51
68
.
4.
Blanchard
,
F.
,
Host
,
B.
,
Maass
,
A.
,
Martinez
,
S.
, and
Rudolph
,
D. J.
, “
Entropy pairs for a measure
,”
Ergodic Theory Dyn. Syst.
15
(
4
),
621
632
(
1995
).
5.
Broderick
,
R.
,
Cyr
,
V.
, and
Kra
,
B.
, “
Complexity and directional entropy in two dimensions
,”
Isr. J. Math.
215
(
1
),
135
162
(
2016
).
6.
Danilenko
,
A. I.
, “
Directional recurrence and directional rigidity for infinite measure preserving actions of nilpotent lattices
,”
Ergodic Theory Dyn. Syst.
37
(
6
),
1841
1861
(
2017
).
7.
Downarowicz
,
T.
, “
Positive topological entropy implies chaos DC2
,”
Proc. Am. Math. Soc.
142
(
1
),
137
149
(
2013
).
8.
Einsiedler
,
M.
, and
Ward
,
T.
,
Ergodic Theory With a View Towards Number Theory
,
Graduate Texts in Mathematics
(
Springer-Verlag London, Ltd.
,
London
,
2011
), Vol.
259
.
9.
E.
Glasner
,
Ergodic Theory via Joinings, Vol. 101 of Mathematical Surveys and Monographs
(
American Mathematical Society
,
Providence, RI
,
2003
).
10.
Huang
,
W.
, and
Jin
,
L.
, “
Stable sets and mean Li–Yorke chaos in positive entropy actions of bi-orderable amenable groups
,”
Ergodic Theory Dyn. Syst.
36
(
8
),
2482
2497
(
2016
).
11.
Huang
,
W.
,
Li
,
J.
, and
Ye
,
X.
, “
Stable sets and mean Li–Yorke chaos in positive entropy systems
,”
J. Funct. Anal.
266
(
6
),
3377
3394
(
2014
).
12.
Huang
,
W.
,
Li
,
J.
, and
Ye
,
X.
, “
Positive entropy implies chaos along any infinite sequence
,”
Trans. Moscow Math. Soc.
82
,
1
14
(
2022
).
13.
Huang
,
W.
, and
Ye
,
X.
, “
A local variational relation and applications
,”
Isr. J. Math.
151
,
237
279
(
2006
).
14.
Kerr
,
D.
, and
Li
,
H.
, “
Independence in topological and C*-dynamics
,”
Math. Ann.
338
(
4
),
869
926
(
2007
).
15.
Kifer
,
Y.
, and
Liu
,
P.-D.
, “
Random dynamics
,”
Handbook of Dynamical Systems
(
Elsevier B. V.
,
Amsterdam
,
2006
), Vol.
1B
, pp.
379
499
.
16.
Li
,
J.
, and
Qiao
,
Y.
, “
Mean Li–Yorke chaos along some good sequences
,”
Monatsh. Math
186
(
1
),
153
173
(
2018
).
17.
Li
,
J.
, and
Ye
,
X. D.
, “
Recent development of chaos theory in topological dynamics
,”
Acta Math. Sin.
32
(
1
),
83
114
(
2016
).
18.
Li
,
W.
,
Packard
,
N. H.
, and
Langton
,
C. G.
, “
Transition phenomena in cellular automata rule space
,”
Physica D
45
(
1–3
),
77
94
(
1990
).
19.
Liu
,
C.
,
Xiao
,
R.
, and
Xu
,
L.
, “
Pinsker σ-algebra character and mean Li–Yorke chaos
,”
J. Dyn. Diff. Equ.
(
2024
).
20.
Liu
,
C.
and
Xu
,
L.
, “
Directional Kronecker algebra for Zq-actions
,”
Ergodic Theory Dyn. Syst.
43
(
4
),
1324
1350
(
2023
).
21.
Milnor
,
J.
, “
Directional entropies of cellular automaton-maps
,” in
Disordered Systems and Biological Organization (Les Houches, 1985), Vol. 20 of NATO Adv. Sci. Inst. Ser. F: Comput. Systems Sci.
(
Springer
,
Berlin
,
1986
), pp.
113
115
.
22.
Milnor
,
J.
, “
On the entropy geometry of cellular automata
,”
Complex Sys.
2
(
3
),
357
385
(
1988
).
23.
Park
,
K. K.
, “
Continuity of directional entropy for a class of Z2-actions
,”
J. Korean Math. Soc.
32
(
3
),
573
582
(
1995
).
24.
Park
,
K. K.
, “
Entropy of a skew product with a Z-action
,”
Pac. J. Math.
172
(
1
),
227
241
(
1996
).
25.
Park
,
K. K.
, “
On directional entropy functions
,”
Isr. J. Math.
113
,
243
267
(
1999
).
26.
Park
,
K. K.
, and
Lee
,
U.
, “
Entropy pairs of Z2 and their directional properties
,”
Stud. Math.
165
(
3
),
255
274
(
2004
).
27.
Petersen
,
K.
,
Ergodic Theory, Vol. 2 of Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
Cambridge
,
1983
).
28.
Robinson
, Jr.,
E. A.
and
Şahin
,
A. A.
, “
Rank-one Zd actions and directional entropy
,”
Ergodic Theory Dynam. Systems
31
,
1
(
2011
),
285
299
.
29.
Vichniac
,
G. Y.
, “
Simulating physics with cellular automata
,”
Physica D
10
(
1–2
),
96
116
(
1984
).
30.
Walters
,
P.
,
An Introduction to Ergodic Theory
,
Graduate Texts in Mathematics
(
Springer-Verlag
,
New York, Berlin
,
1982
), Vol.
79
.
31.
Zhu
,
Y.
, “
A note on two types of Lyapunov exponents and entropies for Zk-actions
,”
J. Math. Anal. Appl.
461
(
1
),
38
50
(
2018
).
You do not currently have access to this content.