We consider a specific Hamiltonian formulation of the Teleparallel Equivalent of General Relativity, where the canonical variables are expressed by means of differential forms. We show that some “position” variables of this formulation can be always gauge-transformed to zero. In this gauge the constraints of the theory become simpler, and the other “position” variables acquire a nice geometric interpretation that allows for an alternative, clearer form of the constraints. Based on these results we derive some exact solutions to the constraints.

1.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
The dynamics of general relativity
,” in
Gravitation: An Introduction to Current Research
, edited by
L.
Witten
(
Wiley
,
1962
), Chap. 7, pp.
227
265
; arXiv:gr-qc/0405109.
2.
A.
Carlotto
, “
The general relativistic constraint equations
,”
Living Rev. Relativ.
24
,
2
(
2021
).
3.
R.
Bartnik
and
J.
Isenberg
, “
The constraint equations
,” in
The Einstein Equations and the Large Scale Behavior of Gravitational Fields
(
Birkhäuser
,
Basel
,
2004
), pp.
1
38
; arXiv:gr-qc/0405092.
4.
S.
Bahamonde
,
K. F.
Dialektopoulos
,
C.
Escamilla-Rivera
,
G.
Farrugia
,
V.
Gakis
,
M.
Hendry
,
M.
Hohmann
,
J.
Levi Said
,
J.
Mifsud
, and
E.
Di Valentino
, “
Teleparallel gravity: From theory to cosmology
,”
Rep. Prog. Phys.
86
,
026901
(
2023
); arXiv:2106.13793.
5.
J. M.
Nester
, “
Positive energy via the teleparallel Hamiltonian
,”
Int. J. Mod. Phys. A
04
,
1755
1772
(
1989
).
6.
R. P.
Wallner
, “
Ashtekar’s variables reexamined
,”
Phys. Rev. D
46
,
4263
4285
(
1992
).
7.
J. W.
Maluf
, “
Hamiltonian formulation of the teleparallel description of general relativity
,”
J. Math. Phys.
35
,
335
343
(
1994
).
8.
M.
Blagojević
and
I. A.
Nikolić
, “
Hamiltonian structure of the teleparallel formulation of general relativity
,”
Phys. Rev. D
62
,
024021
(
2000
); arXiv:hep-th/0002022.
9.
J. W.
Maluf
and
J. F.
da Rocha-Neto
, “
Hamiltonian formulation of general relativity in the teleparallel geometry
,”
Phys. Rev. D
64
,
084014
(
2001
); arXiv:gr-qc/0002059.
10.
J. F.
da Rocha-Neto
,
J. W.
Maluf
, and
S. C.
Ulhoa
, “
Hamiltonian formulation of unimodular gravity in the teleparallel geometry
,”
Phys. Rev. D
82
,
124035
(
2010
); arXiv:1101.2425.
11.
J. W.
Maluf
, “
The teleparallel equivalent of general relativity
,”
Ann. Phys.
525
,
339
357
(
2013
); arXiv:1303.3897.
12.
A.
Okołów
, “
ADM-like Hamiltonian formulation of gravity in the teleparallel geometry
,”
Gen. Relativ. Gravitation
45
,
2569
2610
(
2013
); arXiv:1111.5498.
13.
A.
Okołów
, “
ADM-Like Hamiltonian formulation of gravity in the teleparallel geometry: Derivation of constraint algebra
,”
Gen. Relativ. Gravitation
46
,
1636
(
2014
); arXiv:1309.4685.
14.
A.
Okołów
, “
Variables suitable for constructing quantum states for the teleparallel equivalent of general relativity I
,”
Gen. Relativ. Gravitation
46
,
1620
(
2014
); arXiv:1305.4526.
15.
A.
Okołów
, “
Variables suitable for constructing quantum states for the teleparallel equivalent of general relativity II
,”
Gen. Relativ. Gravitation
46
,
1638
(
2014
); arXiv:1308.2104.
16.
R.
Ferraro
and
M. J.
Guzmán
, “
Hamiltonian formulation of teleparallel gravity
,”
Phys. Rev. D
94
,
104045
(
2016
); arXiv:1609.06766.
17.
D.
Blixt
,
M. J.
Guzmán
,
M.
Hohmann
, and
C.
Pfeifer
, “
Review of the Hamiltonian analysis in teleparallel gravity
,”
Int. J. Geom. Methods Mod. Phys.
18
,
2130005
(
2021
); arXiv:2012.09180.
18.
A.
Okołów
and
J.
Szymankiewicz
, “
Analysis of some solutions to constraints of the teleparallel equivalent of general relativity
” (in preparation).
19.
W.
Thirring
,
Classical Field Theory
(
Springer
,
New York, Wien
,
1986
).
20.
R. P.
Wallner
, “
New variables in gravity theories
,”
Phys. Rev. D
42
,
441
448
(
1990
).
21.
E. W.
Mielke
, “
Ashtekar’s complex variables in general relativity and its teleparallelism equivalent
,”
Ann. Phys.
219
,
78
108
(
1992
).
22.
A.
Okołów
and
J.
Świeżewski
, “
Hamiltonian formulation of a simple theory of the teleparallel geometry
,”
Classical Quantum Gravity
29
,
045008
(
2012
); arXiv:1111.5490.
23.
K.
Maurin
,
Analysis Part I Elements
(
PWN—Polish Scientific Publisher; D. Reidel Publishing Company
,
Warszawa; Dordrecht-Holland/Boston
,
1976
).
24.
G.
Darboux
,
Leçons sur les systèmes orthogonaux et les coordonnées curvilignes
(
Gauthier-Villars
,
1898
).
25.
I.
Yehorchenko
, “
Eikonal equation 0.1
,” arXiv:2212.09914 (
2022
).
26.

In Ref. 12 we assumed that M=R×Σ and that the orientation of Σ is induced by the orientation of M in the following way: suppose (xi) is a (local) coordinate system on Σ and tR. Then (t, xi) is a coordinate system on M. If (t, xi) is compatible with the orientation of M, then (xi) is compatible with the orientation of Σ.

27.

In Refs. 14 and 15 we introduced in fact a family of new variables labeled by functions defined on the set of all coframes (θI) and valued in the set {−1, 1}. Here we use the variables given by the function (θI) ↦  sgn(θI) defined by (2.3).

28.
Suppose that α is a k-form on Σ, and F a functional, which depends on α and . Then functional derivative δF/δα is a (3 − k)-form such that for every variation δα
29.

The curve (3.1) is smooth in the sense that for every point y ∈ Σ the corresponding curve ]λ1,λ2[λa(λ)yTy*Σ, where a(λ)y is the value of a(λ) at y, is smooth.

30.

The initial condition makes sense if λ1 < 0 < λ2 in (3.1), which can be assumed without loss of generality.

31.

The original lemma in Ref. 23 is formulated in terms of a general Banach space rather than a finite dimensional vector space.

32.

Note that our convention is to use (δIJ) to raise lower indices I, J, K, …. But if ξI = 0, then (δIJ) are the components of the metric inverse (dual) to q in the coframe (θI). Therefore the formulas (6.1) holds true.

You do not currently have access to this content.