In their paper Geroch, Kronheimer, and Penrose, “Ideal points in space-time,” [Proc. R. Soc. London, Ser. A 327, 545–567 (1972)] introduced a way to attach ideal points to a spacetime M, defining the causal completion of M. They established that this is a topological space which is Hausdorff when M is globally hyperbolic. In this paper, we prove that if, in addition, M is simply-connected and conformally flat, its causal completion is a topological manifold with boundary homeomorphic to S × [0, 1] where S is a Cauchy hypersurface of M. We also introduce three remarkable families of globally hyperbolic conformally flat spacetimes and provide a description of their causal completions.

1.
R.
Geroch
, “
Domain of dependence
,”
J. Math. Phys.
11
,
437
449
(
1970
).
2.
R.
Geroch
,
E. H.
Kronheimer
, and
R.
Penrose
, “
Ideal points in space-time
,”
Proc. R. Soc. London, Ser. A
327
,
545
567
(
1972
).
3.
R.
Smaï
, “
Enveloping space of a globally hyperbolic conformally flat spacetime
,” Annales de l'Institut Fourier (to be published) (2024); arXiv:2311.17802 [math.DG] (
2023
).
4.
C. R.
Salvemini
, “
Maximal extension of conformally flat globally hyperbolic space–times
,”
Geometriae Dedicata
174
,
235
260
(
2015
).
5.
C. R.
Salvemini
, “
Espace-temps globalement hyperboliques conformément plats
,” Ph.D. thesis,
Université d’Avignon
,
2012
.
6.
E.
Witten
, “
On the structure of the topological phase of two-dimensional gravity
,”
Nucl. Phys. B
340
,
281
332
(
1990
).
7.
B.
O’neill
,
Semi-Riemannian Geometry with Applications to Relativity
(
Academic Press
,
1983
).
8.
A.
Bernal
and
M.
Sánchez
, “
On smooth Cauchy hypersurfaces and Geroch’s splitting theorem
,”
Commun. Math. Phys.
243
,
461
470
(
2003
).
9.
C.
Frances
, “
Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique
,”
Enseign. Math.
49
(
2
),
95
100
(
2003
).
10.
L.
Andersson
,
T.
Barbot
,
F.
Béguin
, and
A.
Zeghib
, “
Cosmological time versus CMC time in spacetimes of constant curvature
,”
Asian J. Math.
16
,
37
88
(
2012
).
11.
F.
Bonsante
and
A.
Seppi
, “
Spacelike convex surfaces with prescribed curvature in (2 + 1)-Minkowski space
,”
Adv. Math.
304
,
434
493
(
2017
).
12.
T.
Barbot
, “
Globally hyperbolic flat space–times
,”
J. Geom. Phys.
53
(
2
),
123
165
(
2005
).
13.
E.
Minguzzi
and
M.
Sánchez Caja
, “
The causal hierarchy of spacetimes
,”
ESI Lect. Math. Phys.
4
,
299
358
(
2008
).
14.
R.
Smai
, “
Espace-temps conformément plats globalement hyperboliques maximaux avec des photons complets
,” Ph.D. thesis,
Avignon University
,
2022
, thèse de doctorat dirigée par Barbot, Thierry Mathématiques Avignon 2022.
15.

This follows immediately from the fact that the boundary of a past set is a closed achronal topological hypersurface of M [see Ref. 7 (Corollary 27, p. 415)].

16.
F.
Bonsante
, “
Flat spacetimes with compact hyperbolic Cauchy surfaces
,”
J. Differ. Geom.
69
,
441
521
(
2005
).
17.
R.
Smai
, “
Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes
,”
Geometriae Dedicata
216
,
45
(
2022
).
18.
W.
Goldman
,
Geometric Structures on Manifolds
,
Lecture Notes
(
University of Maryland
,
2018
).
19.
C. W.
Misner
, “
Taub-NUT space as a counterexample to almost anything
,”
Relativ. Theory Astrophys.
1
,
160
(
1967
).
20.
R.
Penrose
, “
Asymptotic properties of fields and space-times
,”
Phys. Rev. Lett.
10
,
66
68
(
1963
).
You do not currently have access to this content.