We study a lattice Nambu–Jona-Lasinio model with SU(2) and SU(3) flavor symmetries of staggered fermions in the Kogut–Susskind Hamiltonian formalism. This type of four-fermion interactions has been widely used for describing low-energy behaviors of strongly interacting quarks as an effective model. In particular, we focus on the Nambu–Goldstone modes associated with the spontaneous breakdown of the flavor symmetries. In the strong coupling regime for the interactions, we prove the following: (i) For the spatial dimension ν ≥ 5, the SU(3) model shows a long-range order at sufficiently low temperatures. (ii) In the case of the SU(2) symmetry, there appears a long-range order in the spatial dimension ν ≥ 3 at sufficiently low temperatures. (iii) These results hold in the ground states as well. (iv) In general, if a long-range order emerges in this type of models, then there appear gapless excitations above the sector of the infinite-volume ground states. These are nothing but the Nambu–Goldstone modes associated with the spontaneous breakdown of the global rotational symmetry of flavors. (v) In particular, we establish that the number of the linearly independent Nambu–Goldstone modes is equal to the number of the broken symmetry generators on the Hilbert space constructed from a certain symmetry-breaking infinite-volume ground state.

1.
Y.
Goto
and
T.
Koma
, “
Spontaneous mass generation and chiral symmetry breaking in a lattice Nambu–Jona-Lasinio model
,”
Commun. Math. Phys.
404
(
3
),
1463
1493
(
2023
).
2.
Y.
Nambu
and
G.
Jona-Lasinio
, “
Dynamical model of elementary particles based on an analogy with superconductivity. I
,”
Phys. Rev.
122
,
345
358
(
1961
).
3.
Y.
Nambu
and
G.
Jona-Lasinio
, “
Dynamical model of elementary particles based on an analogy with superconductivity. II
,”
Phys. Rev.
124
,
246
254
(
1961
).
4.
L.
Susskind
, “
Lattice fermions
,”
Phys. Rev. D
16
,
3031
3039
(
1977
).
5.
M.
Salmhofer
and
E.
Seiler
, “
Proof of chiral symmetry breaking in strongly coupled lattice gauge theory
,”
Commun. Math. Phys.
139
,
395
431
(
1991
).
6.
M.
Salmhofer
and
E.
Seiler
, “
Proof of chiral symmetry breaking in lattice gauge theory
,”
Lett. Math. Phys.
21
,
13
21
(
1991
).
7.
S.
Aoki
,
S.
Boettcher
, and
A.
Gocksch
, “
Spontaneous breaking of flavor symmetry and parity in the Nambu–Jona-Lasinio model with Wilson fermions
,”
Phys. Lett. B
331
,
157
164
(
1994
).
8.
T.
Hatsuda
and
T.
Kunihiro
, “
QCD phenomenology based on a chiral effective Lagrangian
,”
Phys. Rep.
247
,
221
367
(
1994
); arXiv:hep-ph/9401310.
9.
J.
Kogut
and
L.
Susskind
, “
Hamiltonian formulation of Wilson’s lattice gauge theories
,”
Phys. Rev. D
11
,
395
408
(
1975
).
10.
H. J.
Rothe
,
Lattice Gauge Theories: An Introduction
,
World Scientific Lecture Notes in Physics
, 4th ed. (
World Scientific
,
2012
), Vol.
82
.
11.
S.
Nakamura
, “
Remarks on discrete Dirac operators and their continuum limits
,”
J. Spectr. Theory.
14
,
255
(
2024
); arXiv:2306.14180.
12.
E.
Seiler
,
Gauge Theories as a Problem of Constructive Field Theory and Statistical Physics
,
Lecture Notes in Physics
(
Springer Verlag
,
1982
), Vol.
159
.
13.
F. J.
Dyson
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions in quantum spin systems with isotropic and nonisotropic interactions
,”
J. Stat. Phys.
18
,
335
383
(
1978
).
14.
A.
Jaffe
and
F. L.
Pedrocchi
, “
Reflection positivity for majoranas
,”
Ann. Henri Poincaré
16
(
1
),
189
203
(
2015
).
15.
T.
Koma
, “
Nambu–Goldstone modes for superconducting lattice fermions
,” arXiv:2201.13135 (
2022
).
16.
T.
Koma
, “
Dispersion relations of Nambu–Goldstone modes
,” arXiv:2105.04970 (
2021
).
17.
T.
Koma
, “
Maximum spontaneous magnetization and Nambu–Goldstone mode
,” arXiv:1712.09018 (
2017
).
18.
J.
Fröhlich
,
R. B.
Israel
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions and reflection positivity. II. Lattice systems with short-range and coulomb interactions
,”
J. Stat. Phys.
22
,
297
347
(
1980
).
19.
J.
Fröhlich
,
B.
Simon
, and
T.
Spencer
, “
Infrared bounds, phase transitions and continuous symmetry breaking
,”
Commun. Math. Phys.
50
,
79
95
(
1976
).
20.
M.
Lüscher
, “
Construction of a selfadjoint, strictly positive transfer matrix for Euclidean lattice gauge theories
,”
Commun. Math. Phys.
54
,
283
292
(
1977
).
21.
C.
Borgs
and
E.
Seiler
, “
Lattice Yang-Mills theory at nonzero temperature and the confinement problem
,”
Commun. Math. Phys.
91
,
329
380
(
1983
).
22.
K.
Osterwalder
and
E.
Seiler
, “
Gauge field theories on a lattice
,”
Ann. Phys.
110
,
440
471
(
1978
).
23.

As is well known, in the Euclidean formalism, the reflection positivity is needed to make the corresponding Hamiltonian self-adjoint.

24.
I.
Affleck
and
E. H.
Lieb
, “
A proof of part of Haldane’s conjecture on spin chains
,”
Lett. Math. Phys.
12
,
57
69
(
1986
).
25.
T.
Koma
, “
π flux phase and superconductivity for lattice fermions coupled to classical gauge fields
,” arXiv:2205.00835 (
2022
).
26.
Y.
Nambu
, “
Axial vector current conservation in weak interactions
,”
Phys. Rev. Lett.
4
,
380
382
(
1960
).
27.
T.
Kennedy
,
E. H.
Lieb
, and
B. S.
Shastry
, “
Existence of Néel order in some spin-1/2 Heisenberg antiferromagnets
,”
J. Stat. Phys.
53
,
1019
(
1988
).
28.
T.
Kennedy
,
E. H.
Lieb
, and
B. S.
Shastry
, “
The XY model has long-range order for all spins and all dimensions greater than one
,”
Phys. Rev. Lett.
61
,
2582
(
1988
).
29.
Y.
Nambu
, “
Quasi-particles and gauge invariance in the theory of superconductivity
,”
Phys. Rev.
117
,
648
663
(
1960
).
30.
J.
Goldstone
, “
Field theories with ≪Superconductor≫ solutions
,”
Il Nuovo Cimento
19
,
154
164
(
1961
).
31.
J.
Goldstone
,
A.
Salam
, and
S.
Weinberg
, “
Broken symmetries
,”
Phys. Rev.
127
,
965
970
(
1962
).
32.
T.
Momoi
, “
An upper bound for the spin-wave spectrum of the Heisenberg antiferromagnet
,”
J. Phys. Soc. Jpn.
63
,
2507
2510
(
1994
).
33.
T.
Momoi
, “
Quantum fluctuations in quantum lattice systems with continuous symmetry
,”
J. Stat. Phys.
85
,
193
210
(
1996
).
34.
C.
Vafa
and
E.
Witten
, “
Restrictions on symmetry breaking in vector-like gauge theories
,”
Nucl. Phys. B
234
,
173
188
(
1984
).
35.
S.
Aoki
, “
Solution to the U(1) problem on a lattice
,”
Phys. Rev. Lett.
57
,
3136
(
1986
).
36.
S.
Aoki
, “
New phase structure for lattice QCD with Wilson fermions
,”
Phys. Rev. D
30
,
2653
(
1984
).
37.
S.
Aoki
and
A.
Gocksch
, “
Spontaneous breaking of flavor symmetry and parity in lattice QCD with Wilson fermions
,”
Phys. Rev. D
45
,
3845
3853
(
1992
).
38.

The generators Q(a) are ill-defined in the infinite-volume limit. However, we will always use them in finite-volume systems. Therefore, mathematical problems in the infinite-volume systems do not arise concerning the generators.

39.
H.
Watanabe
and
H.
Murayama
, “
Unified description of Nambu–Goldstone bosons without Lorentz invariance
,”
Phys. Rev. Lett.
108
,
251602
(
2012
).
40.
Y.
Hidaka
, “
Counting rule for Nambu-Goldstone modes in nonrelativistic systems
,”
Phys. Rev. Lett.
110
,
091601
(
2013
).
41.
T.
Koma
and
H.
Tasaki
, “
Symmetry breaking in Heisenberg antiferromagnets
,”
Commun. Math. Phys.
158
,
191
214
(
1993
).
42.
H.
Tasaki
,
Physics and Mathematics of Quantum Many-Body Systems
,
Graduate Texts in Physics
(
Springer
,
2020
).
43.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 1
, 2nd ed. (
Springer-Verlag
,
New York, Berlin, Heidelberg
,
1987
).
44.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (
Springer-Verlag
,
New York, Berlin, Heidelberg
,
1997
).
45.
W.
Marshall
, “
Antiferromagnetism
,”
Proc. R. Soc. A
232
,
48
(
1955
).
46.
E. H.
Lieb
and
D.
Mattis
, “
Ordering energy levels of interacting spin systems
,”
J. Math. Phys.
3
,
749
751
(
1962
).
47.

In the Euclidean formalism, treated in Refs. 12 and 22, the corresponding map should be an anti-morphism due to the anti-symmetry of the Grassmann algebra. In any case, it should be noted again that these formalisms and ours differ in several respects.

48.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
W.A. Benjamin Publ
,
New York
,
1969
).
49.
E. J.
Neves
and
J.
Perez
, “
Long range order in the ground state of two-dimensional antiferromagnets
,”
Phys. Lett. A
114
,
331
333
(
1986
).
50.
E. H.
Lieb
,
T.
Schultz
, and
D.
Mattis
, “
Two soluble models of an antiferromagnetic chain
,”
Ann. Phys.
16
,
407
466
(
1961
).
51.
T.
Koma
, “
Spectral gaps of quantum Hall systems with interactions
,”
J. Stat. Phys.
99
,
313
381
(
2000
).
52.

In order to prove the equivalence between V and Ṽ, consider transformations, Vt≔ exp[itA] and ṼtxΛexp[itΨ(x)AΨ(x)], with the real parameter t. It is enough to show the equivalence between VtΨ(x) and ṼtΨ(x)Ṽt. By differentiating with respect to t, one can obtain the two differential equations with the same form. They have also the same initial value at t = 0. Therefore, the uniquness of their solutions implies the desired result at t = 1.

You do not currently have access to this content.