The recent article by Jones et al. [arXiv:2307.12552 (2023)] gave local topological order (LTO) axioms for a quantum spin system, showed they held in Kitaev’s Toric Code and in Levin-Wen string net models, and gave a bulk boundary correspondence to describe bulk excitations in terms of the boundary net of algebras. In this article, we prove the LTO axioms for Kitaev’s Quantum Double model for a finite group G. We identify the boundary nets of algebras with fusion categorical nets associated to (Hilb(G),C[G]) or (Rep(G),CG) depending on whether the boundary cut is rough or smooth, respectively. This allows us to make connections to the work of Ogata [Ann. Henri Poincaré 25, 2353–2387 (2024)] on the type of the cone von Neumann algebras in the algebraic quantum field theory approach to topological superselection sectors. We show that the boundary algebras can also be calculated from a trivial G-symmetry protected topological phase (G-SPT), and that the gauging map preserves the boundary algebras. Finally, we compute the boundary algebras for the (3 + 1)D Quantum Double model associated to an Abelian group.

1.
X.-G.
Wen
, “
Colloquium: Zoo of quantum-topological phases of matter
,”
Rev. Mod. Phys.
89
,
041004
(
2017
); arXiv:1610.03911.
2.
C.
Jones
,
P.
Naaijkens
,
D.
Penneys
, and
D.
Wallick
, “
Local topological order and boundary algebras
,” arXiv:2307.12552 (
2023
).
3.
X. G.
Wen
, “
Gapless boundary excitations in the quantum Hall states and in the chiral spin states
,”
Phys. Rev. B
43
,
11025
11036
(
1991
).
4.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
); arXiv:cond-mat/0411737.
5.
J.
Cano
,
M.
Cheng
,
M.
Mulligan
,
C.
Nayak
,
E.
Plamadeala
, and
J.
Yard
, “
Bulk-edge correspondence in (2 + 1)-dimensional Abelian topological phases
,”
Phys. Rev. B
89
,
115116
(
2014
); arXiv:1310.5708.
6.
J. C.
Wang
and
X.-G.
Wen
, “
Boundary degeneracy of topological order
,”
Phys. Rev. B
91
,
125124
(
2015
); arXiv:1212.4863.
7.
E.
Prodan
and
H.
Schulz-Baldes
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(
Springer International Publishing
,
2016
); arXiv:1510.08744.
8.
R. B.
Laughlin
, “
Quantized Hall conductivity in two dimensions
,”
Phys. Rev. B
23
,
5632
5633
(
1981
).
9.
B. I.
Halperin
, “
Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential
,”
Phys. Rev. B
25
,
2185
2190
(
1982
).
10.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Homotopy and quantization in condensed matter physics
,”
Phys. Rev. Lett.
51
,
51
53
(
1983
).
11.
N.
Andrei
,
A.
Bissi
,
M.
Buican
,
J.
Cardy
,
P.
Dorey
,
N.
Drukker
,
J.
Erdmenger
,
D.
Friedan
,
D.
Fursaev
,
A.
Konechny
,
C.
Kristjansen
,
I.
Makabe
,
Y.
Nakayama
,
A.
O’Bannon
,
R.
Parini
,
B.
Robinson
,
S.
Ryu
,
C.
Schmidt-Colinet
,
V.
Schomerus
,
C.
Schweigert
, and
G. M. T.
Watts
, “
Boundary and defect CFT: Open problems and applications
,”
J. Phys. A: Math. Theor.
53
,
453002
(
2020
); arXiv:1810.05697.
12.
X.-L.
Qi
,
H.
Katsura
, and
A. W. W.
Ludwig
, “
General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states
,”
Phys. Rev. Lett.
108
,
196402
(
2012
); arXiv:1103.5437.
13.
J. R.
Fliss
,
X.
Wen
,
O.
Parrikar
,
C.-T.
Hsieh
,
B.
Han
,
T. L.
Hughes
, and
R. G.
Leigh
, “
Interface contributions to topological entanglement in abelian Chern-Simons theory
,”
J. High Energy Phys.
2017
,
56
; arXiv:1705.09611.
14.
J.
Lou
,
C.
Shen
, and
L.-Y.
Hung
, “
Ishibashi states, topological orders with boundaries and topological entanglement entropy. Part I
,”
J. High Energy Phys.
2019
,
168
; arXiv:1901.08238.
15.
C.
Jones
, “
DHR bimodules of quasi-local algebras and symmetric quantum cellular automata
,” arXiv:2304.00068 (
2023
).
16.
A.
Chatterjee
and
X.-G.
Wen
, “
Symmetry as a shadow of topological order and a derivation of topological holographic principle
,”
Phys. Rev. B
107
,
155136
(
2023
); arXiv:2203.03596.
17.
K.
Kawagoe
and
M.
Levin
, “
Microscopic definitions of anyon data
,”
Phys. Rev. B
101
,
115113
(
2020
); arXiv:1910.11353.
18.
B.
Shi
,
K.
Kato
, and
I. H.
Kim
, “
Fusion rules from entanglement
,”
Ann. Phys.
418
(
49
),
168164
(
2020
); arXiv:1906.09376.
19.

Since this article was published to the arXiv, two articles related to Ref. 18 have appeared. Kim et al. [I. H. Kim, T.-C. Lin, D. Ranard, and B. Shi, “Strict area law implies commuting parent Hamiltonian,” arXiv:2404.05867 (2024)] show that if the entanglement entropy of a quantum state satisfies a strict area law, it can be obtained as the ground state of a commuting projector Hamiltonian, and the work by Kim and Ranard [I. H. Kim and D. Ranard, “Classifying 2D topological phases: mapping ground states to string-nets,” arXiv:2405.17379 (2024)] constructs a finite depth quantum circuit taking such a state to a string net ground state. The approach of this latter article uses boundary excitations, and not just the bulk theory, to reproduce the desired fusion category.

20.
S.
Bravyi
,
M. B.
Hastings
, and
S.
Michalakis
, “
Topological quantum order: Stability under local perturbations
,”
J. Math. Phys.
51
(
9
),
093512
(
2010
); arXiv:1001.0344.
21.
A. Y.
Kitaev
, “
Quantum computations: Algorithms and error correction
,”
Russ. Math. Surv.
52
,
1191
(
1997
).
22.
M. A.
Levin
and
X.-G.
Wen
, “
String-net condensation: A physical mechanism for topological phases
,”
Phys. Rev. B
71
,
045110
(
2005
); arXiv:cond-mat/0404617.
23.
C.-H.
Lin
,
M.
Levin
, and
F. J.
Burnell
, “
Generalized string-net models: A thorough exposition
,”
Phys. Rev. B
103
,
195155
(
2021
); arXiv:2012.14424.
24.
A. Y.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
); arXiv:quant-ph/9707021.
25.
L.
Kong
, “
Some universal properties of Levin-Wen models
,” in
XVIIth International Congress on Mathematical Physics
(
World Scientific Publishing
,
Hackensack, NJ
,
2014
), pp.
444
455
; arXiv:1211.4644.
26.
D.
Green
,
P.
Huston
,
K.
Kawagoe
,
D.
Penneys
,
A.
Poudel
, and
S.
Sanford
, “
Enriched string-net models and their excitations
,”
Quantum
8
,
1301
(
2024
).
27.
L.
Fiedler
and
P.
Naaijkens
, “
Haag duality for Kitaev’s quantum double model for abelian groups
,”
Rev. Math. Phys.
27
(
09
),
1550021
(
2015
); arXiv:1406.1084.
28.
Y.
Ogata
, “
Type of local von Neumann algebras in abelian quantum double model
,”
Ann. Henri Poincaré
25
,
2353
2387
(
2024
).
29.
J. B.
Kogut
, “
An introduction to lattice gauge theory and spin systems
,”
Rev. Mod. Phys.
51
,
659
713
(
1979
).
30.
Y.
Hu
,
Y.
Wan
, and
Y.-S.
Wu
, “
Twisted quantum double model of topological phases in two dimensions
,”
Phys. Rev. B
87
,
125114
(
2013
); arXiv:1211.3695.
31.
D. V.
Else
and
C.
Nayak
, “
Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge
,”
Phys. Rev. B
90
,
235137
(
2014
); arXiv:1409.5436.
32.
K.
Kawagoe
and
M.
Levin
, “
Anomalies in bosonic symmetry-protected topological edge theories: Connection to F symbols and a method of calculation
,”
Phys. Rev. B
104
,
115156
(
2021
); arXiv:2105.02909.
33.
S. X.
Cui
,
D.
Ding
,
X.
Han
,
G.
Penington
,
D.
Ranard
,
B. C.
Rayhaun
, and
Z.
Shangnan
, “
Kitaev’s quantum double model as an error correcting code
,”
Quantum
4
,
331
(
2020
); arXiv:1908.02829.
34.
P.
Naaijkens
, “
Anyons in infinite quantum systems: QFT in d = 2 + 1 and the Toric Code
,” Ph.D. thesis,
Radboud Universiteit Nijmegen
,
2012
; available at https://repository.ubn.ru.nl/handle/2066/92737.
35.
V. F. R.
Jones
, “
Planar algebras
,”
N. Z. J. Math.
52
,
1
107
(
2021
); arXiv:math.QA/9909027.
36.
S.
Yamagami
, “
Group symmetry in tensor categories and duality for orbifolds
,”
J. Pure Appl. Algebra
167
,
83
128
(
2002
).
37.
Z. A.
Landau
, “
Exchange relation planar algebras
,” in
Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000)
Geom. Dedicata
95
,
183
244
(
2002
).
38.
J. G.
Glimm
, “
On a certain class of operator algebras
,”
Trans. Am. Math. Soc.
95
,
318
340
(
1960
).
39.
O.
Bratteli
, “
Inductive limits of finite dimensional C*-algebras
,”
Trans. Am. Math. Soc.
171
,
195
234
(
1972
).
40.
G. A.
Elliott
, “
On the classification of inductive limits of sequences of semisimple finite-dimensional algebras
,”
J. Algebra
38
,
29
44
(
1976
).
41.
K.
Kawagoe
,
C.
Jones
,
S.
Sanford
,
D.
Green
, and
D.
Penneys
, “
Levin-Wen is a gauge theory: Entanglement from topology
,”
Commun. Math. Phys.
405
,
266
(
2024
).
42.

Reference 28 uses a slightly different definition. In her paper, she only considers edges that are completely contained in the region enclosed by the two rays. However, she uses a dual convention to ours for the Quantum Double model, so this definition more closely aligns with hers when the differing conventions are taken into account.

43.

Ogata only claims this result in the case when the group is abelian. However, her work in Ref. 28, combined with an argument from Ref. 27, can be used to prove the more general case. In addition, after this article was posted to the arXiv, Bols and Vadnekar [A. Bols and S. Vadnerkar, “Classification of the anyon sectors of Kitaev's quantum double model,” arXiv:2310.19661 (2023)] proved the necessary result for the proof in Ref. 28 to hold for nonabelian groups.

44.
P.
Naaijkens
, “
Localized endomorphisms in Kitaev’s toric code on the plane
,”
Rev. Math. Phys.
23
,
347
373
(
2011
); arXiv:1012.3857.
You do not currently have access to this content.