We study the large-time asymptotics of the edge current for a family of time-fractional Schrödinger equations with a constant, transverse magnetic field on a half-plane (x,y)Rx+×Ry. The time-fractional Schrödinger equation is parameterized by two constants (α, β) in (0, 1], where α is the fractional order of the time derivative, and β is the power of i in the Schrödinger equation. We prove that for fixed α, there is a transition in the transport properties as β varies in (0, 1]: For 0 < β < α, the edge current grows exponentially in time, for α = β, the edge current is asymptotically constant, and for β > α, the edge current decays in time. We prove that the mean square displacement in the yR-direction undergoes a similar transport transition. These results provide quantitative support for the comments of Laskin [Phys. Rev. E 62, 3135 (2000)] that the latter two cases, α = β and α < β, are the physically relevant ones.

1.
Bayin
,
S.
, “
Time fractional Schrödinger equation: Fox’s H-functions and the effective potential
,”
J. Math. Phys.
54
,
012103
(
2013
).
2.
De Bièvre
,
S.
and
Pulé
,
J.
, “
Propagating edge states for a magnetic Hamiltonian
,”
Math. Phys. Electron. J.
5
(
3
),
17
(
1999
).
3.
Dong
,
J.
and
Xu
,
M.
, “
Space-time fractional Schrödinger equation with time-independent potentials
,”
J. Math. Anal. Appl.
344
,
1005
1017
(
2008
).
4.
Feynman
,
R. P.
and
Hibbs
,
A. R.
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
5.
Górka
,
P.
,
Prado
,
H.
, and
Pons
,
D. J.
, “
The asymptotic behavior of the time fractional Schrödinger equation on Hilbert space
,”
J. Math. Phys.
61
(
3
),
031501
(
2020
).
6.
Górka
,
P.
,
Prado
,
H.
, and
Trujillo
,
J.
, “
The time fractional Schrödinger equation on Hilbert space
,”
Integr. Equations Oper. Theory
87
,
1
14
(
2017
).
7.
Hislop
,
P. D.
and
Soccorsi
,
É.
, “
Edge currents for quantum Hall systems I: One-edge, unbounded geometries
,”
Rev. Math. Phys.
20
(
01
),
71
115
(
2008
).
8.
Hislop
,
P. D.
and
Soccorsi
,
É.
, “
Asymptotic analysis of time-fractional quantum diffusion
,”
Appl. Math. Lett.
152
,
109033
(
2024
).
9.
Iomin
,
A.
, “
Fractional-time quantum dynamics
,”
Phys. Rev. E
80
,
022103
(
2009
).
10.
Iomin
,
A.
, “
Fractional-time Schrödinger equation: Fractional dynamics on a comb
,”
Chaos, Solitons Fractals
44
,
348
352
(
2011
).
11.
Iomin
,
A.
, “
Fractional evolution in quantum mechanics
,”
Chaos, Solitons Fractals: X
1
,
100001
(
2019
).
12.
Iomin
,
A.
, “
Fractional time quantum mechanics
,” in
Handbook of Fractional Calculus with Applications: Applications in Physics, Part B
, edited by
Tarasov
,
V.
(
De Gruyter
,
2019
), Vol.
5
.
13.
Laskin
,
N.
, “
Fractional quantum mechanics
,”
Phys. Rev. E
62
(
3
),
3135
3145
(
2000
).
14.
Laskin
,
N.
, “
Fractional quantum mechanics and Lévy path integrals
,”
Phys. Lett. A
268
(
4–6
),
298
305
(
2000
).
15.
Laskin
,
N.
, “
Fractional Schrödinger equation
,”
Phys. Rev. E
66
(
5
),
056108
(
2002
).
16.
Naber
,
M.
, “
Time fractional Schrödinger equation
,”
J. Math. Phys.
45
(
8
),
3339
3352
(
2004
).
17.
Narahari Achar
,
B. N.
,
Yale
,
B. T.
, and
Hanneken
,
J. W.
, “
Time fractional Schrödinger equation revisited
,”
Adv. Math. Phys.
2013
,
290216
.
18.
Podlubny
,
I.
,
An Introduction to Fractional Derivatives, Fractional Differential Equations
(
Academic Press
,
1998
).
19.
Wang
,
S.
and
Xu
,
M.
, “
Generalized fractional Schrödinger equation with space–time fractional derivatives
,”
J. Math. Phys.
48
,
043502
(
2007
).
You do not currently have access to this content.