The ellipsoidal-Bhatnagar, Gross, and Krook (ES-BGK) model is introduced as a generalized version of the original BGK model with the aim of calculating the correct Prandtl number, which is the ratio between viscosity and thermal conductivity. In this paper, we study the existence and uniqueness of Lp-solutions to the ES-BGK model for the polyatomic molecules, within the range 1 ≤ p ≤ ∞. This research aims to provide a comprehensive analysis in pursuit of a better understanding of the behavior of these systems.
REFERENCES
1.
P. L.
Bhatnagar
, E. P.
Gross
, and M.
Krook
, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,” Phys. Rev.
94
, 511
–525
(1954
).2.
P.
Andries
, P.
Le Tallec
, J.-P.
Perlat
, and B.
Perthame
, “The Gaussian-BGK model of Boltzmann equation with small Prandtl number
,” Eur. J. Mech., B: Fluids
19
(6
), 813
–830
(2000
).3.
B.
Perthame
, “Global existence to the BGK model of Boltzmann equation
,” J. Differ. Equations
82
(1
), 191
–205
(1989
).4.
B.
Perthame
and M.
Pulvirenti
, “Weighted L∞ bounds and uniqueness for the Boltzmann BGK model
,” Arch. Ration. Mech. Anal.
125
(3
), 289
–295
(1993
).5.
S.
Mischler
, “Uniqueness for the BGK-equation in and rate of convergence for a semi-discrete scheme
,” Differ. Integr. Equations
9
(5
), 1119
–1138
(1996
).6.
J.
Wei
and X.
Zhang
, “On the BGK equation with some force fields in Lp space
,” Nonlinear Anal.: Theory, Methods Appl.
85
, 52
–65
(2013
).7.
X.
Zhang
and S.
Hu
, “Lp solutions to the Cauchy problem of the BGK equation
,” J. Math. Phys.
48
(11
), 113304
(2007
).8.
S.
Ukai
, “Stationary solutions of the BGK model equation on a finite interval with large boundary data
,” Transp. Theory Stat. Phys.
21
(4–6
), 487
–500
(1992
).9.
A.
Bellouquid
, “Global existence and large-time behavior for BGK model for a gas with non-constant cross section
,” Transp. Theory Stat. Phys.
32
(2
), 157
–184
(2003
).10.
W. M.
Chan
, “An energy method for the BGK model
,” M.Phil. thesis, City University of Hong Kong
, 2007
, Vol. 2, pp. 375
–413
.11.
S.-B.
Yun
, “Cauchy problem for the Boltzmann-BGK model near a global Maxwellian
,” J. Math. Phys.
51
(12
), 123514
(2010
).12.
G.-C.
Bae
, J.-W.
Jang
, and S.-B.
Yun
, “The relativistic quantum Boltzmann equation near equilibrium
,” Arch. Ration. Mech. Anal.
240
(3
), 1593
–1644
(2021
).13.
B.-H.
Hwang
, “Global existence of bounded solutions to the relativistic BGK model
,” Nonlinear Anal.: Real World Appl.
63
, 103409
(2022
).14.
B.-H.
Hwang
, H.
Lee
, and S.-B.
Yun
, “Relativistic BGK model for massless particles in the FLRW spacetime
,” Kinet. Relat. Models
14
(6
), 949
–959
(2021
).15.
B.-H.
Hwang
, T.
Ruggeri
, and S.-B.
Yun
, “On a relativistic BGK model for polyatomic gases near equilibrium
,” SIAM J. Math. Anal.
54
(3
), 2906
–2947
(2022
).16.
B.-H.
Hwang
and S.-B.
Yun
, “Stationary solutions to the boundary value problem for the relativistic BGK model in a slab
,” Kinet. Relat. Models
12
(4
), 749
–764
(2019
).17.
G.-C.
Bae
and S.-B.
Yun
, “Quantum BGK model near a global Fermi–Dirac distribution
,” SIAM J. Math. Anal.
52
(3
), 2313
–2352
(2020
).18.
G.-C.
Bae
and S.-B.
Yun
, “Stationary quantum BGK model for bosons and fermions in a bounded interval
,” J. Stat. Phys.
178
(4
), 845
–868
(2020
).19.
G.-C.
Bae
, C.
Klingenberg
, M.
Pirner
, and S.-B.
Yun
, “BGK model of the multi-species Uehling-Uhlenbeck equation
,” Kinet. Relat. Models
14
(1
), 25
–44
(2021
).20.
G.-C.
Bae
, C.
Klingenberg
, M.
Pirner
, and S.-B.
Yun
, “BGK model for two-component gases near a global Maxwellian
,” SIAM J. Math. Anal.
55
(2
), 1007
–1047
(2023
).21.
D. H.
Kim
, M.-S.
Lee
, and S.-B.
Yun
, “Stationary BGK models for chemically reacting gas in a slab
,” J. Stat. Phys.
184
, 24
(2021
).22.
D. H.
Kim
, M.-S.
Lee
, and S.-B.
Yun
, “On the positivity of an auxiliary function of the BGK model for slow chemical reactions
,” Appl. Math. Lett.
113
, 106841
(2021
).23.
S.
Boscarino
and S.-Y.
Cho
, “On the order reduction of semi-Lagrangian methods for BGK model of Boltzmann equation
,” Appl. Math. Lett.
123
, 107488
(2022
).24.
S.
Boscarino
, S.-Y.
Cho
, G.
Russo
, and S.-B.
Yun
, “Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules
,” ESAIM: Math. Modell. Numer. Anal.
56
(3
), 893
–942
(2022
).25.
S.
Boscarino
, S.-Y.
Cho
, G.
Russo
, and S.-B.
Yun
, “High order conservative semi-Lagrangian scheme for the BGK model of the Boltzmann equation
,” Commun. Comput. Phys.
29
(1
), 1
–56
(2021
).26.
S.
Boscarino
, S.-Y.
Cho
, and G.
Russo
, “A local velocity grid conservative semi-Lagrangian schemes for BGK model
,” J. Comput. Phys.
460
, 111178
(2022
).27.
S.-Y.
Cho
, S.
Boscarino
, G.
Russo
, and S.-B.
Yun
, “Conservative semi-Lagrangian schemes for kinetic equations Part I: Reconstruction
,” J. Comput. Phys.
432
, 110159
(2021
).28.
D.
Issautier
, “Convergence of a weighted particle method for solving the Boltzmann (B.G.K) equation
,” SIAM J. Numer. Anal.
33
(6
), 2099
–2199
(1996
).29.
G.
Russo
, P.
Santagati
, and S.-B.
Yun
, “Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation
,” SIAM J. Numer. Anal.
50
(3
), 1111
–1135
(2012
).30.
L. H.
Holway
, “Kinetic theory of shock structure using and ellipsoidal distribution function
,” in Rarefied Gas Dynamics: Proceedings of the Fourth International Symposium, University of Toronto, 1964
(Academic Press
, New York
, 1966
), Vol. I
, pp. 193
–215
.31.
S.
Brull
and J.
Schneider
, “A new approach for the ellipsoidal statistical model
,” Continuum Mech. Thermodyn.
20
(2
), 63
–74
(2008
).32.
S.
Brull
and J.
Schneider
, “On the ellipsoidal statistical model for polyatomic gases
,” Continuum Mech. Thermodyn.
20
(8
), 489
–508
(2009
).33.
S.-B.
Yun
, “Ellipsoidal BGK model near a global Maxwellian
,” SIAM J. Math. Anal.
47
(3
), 2324
–2354
(2015
).34.
S. J.
Park
and S.-B.
Yun
, “Cauchy problem for the ellipsoidal-BGK model of the Boltzmann equation
,” J. Math. Phys.
57
(8
), 081512
(2016
).35.
S.-J.
Son
and S.-B.
Yun
, “Cauchy problem for the ES-BGK model with the correct Prandtl number
,” Partial Differ. Equations Appl.
3
, 41
(2022
).36.
S.-B.
Yun
, “Classical solutions for the ellipsoidal BGK model with fixed collision frequency
,” J. Differ. Equations
259
(11
), 6009
–6037
(2015
).37.
J.
Bang
and S.-B.
Yun
, “Stationary solutions for the ellipsoidal BGK model in a slab
,” J. Differ. Equations
261
(10
), 5803
–5828
(2016
).38.
S.
Brull
and S.-B.
Yun
, “Stationary flows of the ES-BGK model with the correct Prandtl number
,” SIAM J. Math Anal.
56
, 6361
–6397
(2024
).39.
S.-B.
Yun
, “Entropy production for ellipsoidal BGK model of the Boltzmann equation
,” Kinet. Relat. Models
9
(3
), 605
–619
(2016
).40.
S.-B.
Yun
, “Ellipsoidal BGK model for polyatomic molecules near Maxwellians: A dichotomy in the dissipation estimate
,” J. Differ. Equations
266
(9
), 5566
–5614
(2019
).41.
S.-J.
Park
and S.-B.
Yun
, “Cauchy problem for the ellipsoidal BGK model for polyatomic particles
,” J. Differ. Equations
266
(11
), 7678
–7708
(2019
).42.
S.-J.
Son
and S.-B.
Yun
, “The ES-BGK for the polyatomic molecules with infinite energy
,” J. Stat. Phys.
190
(8
), 129
(2023
).43.
S.-J.
Park
and S.-B.
Yun
, “Entropy production estimates for the polyatomic ellipsoidal BGK model
,” Appl. Math. Lett.
58
, 26
(2016
).44.
P.
Andries
, J.-F.
Bourgat
, P.
Le Tallec
, and B.
Perthame
, “Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases
,” Comput. Methods Appl. Mech. Eng.
191
(31
), 3369
–3390
(2002
).45.
D. H.
Kim
, M.-S.
Lee
, and S.-B.
Yun
, “Entropy production estimate for the ES-BGK model with the correct Prandtl number
,” J. Math. Anal. Appl.
514
(2
), 126323
(2022
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.