Recently, research about nonlocal integrable systems has become a popular topic. Here, we mainly use the Riemann–Hilbert (RH) approach to discuss the nonlocal complex modified Korteweg–de Vries (cmKdV) equation with step-like initial value. That is the Cauchy problem, i.e., we establish the analytical relation between the solutions r(z, t), r(−z, −t) of the nonlocal cmKdV equation and the solution of a matrix RH problem. First, we analyze the eigenfunctions of the linear spectral problem of the nonlocal cmKdV equation. Second, we discuss the scattering matrix T(ɛ) and its spectral functions α1(ɛ), β(ɛ) and α2(ɛ) depending on the prescribed step-like initial value. Finally, we find that the solution of the Cauchy problem of the nonlocal cmKdV equation can be represented by the solution of the corresponding matrix RH problem.

1.
M.
Wadati
, “
The modified Korteweg–de Vries equation
,”
J. Phys. Soc. Jpn.
34
,
1289
1296
(
1973
).
2.
N.
Yajima
and
M.
Oikawa
, “
A class of exactly solvable nonlinear evolution equations
,”
Prog. Theor. Phys.
54
,
1576
1577
(
1975
).
3.
C.
Athorne
and
A. P.
Fordy
, “
Generalised KdV and MKdV equations associated with symmetric spaces
,”
J. Phys. A: Math. Gen.
20
,
1377
1386
(
1987
).
4.
I. T.
Habibullin
, “
An initial-boundary value problem on the half-line for the MKdv equation
,”
Funct. Anal. Appl.
34
,
52
59
(
2000
).
5.
R.
Hirota
, “
Exact envelope-soliton solutions of a nonlinear wave equation
,”
J. Math. Phys.
14
(
7
),
805
809
(
1973
).
6.
G.
Chaohao
and
Z.
Zixiang
, “
On the Darboux matrices of Bäcklund transformations for AKNS systems
,”
Lett. Math. Phys.
13
(
3
),
179
187
(
1987
).
7.
A.
Boutet de Monvel
,
A. S.
Fokas
, and
D.
Shepelsky
, “
The MKdV equation on the half-line
,”
J. Inst. Math. Jussieu
3
,
139
164
(
2004
).
8.
S. Y.
Lou
and
F.
Huang
, “
Alice-Bob physics: Coherent solutions of nonlocal KdV systems
,”
Sci. Rep.
7
,
869
911
(
2017
).
9.
B. B.
Hu
,
T. C.
Xia
, and
W. X.
Ma
, “
Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg–de Vries equation on the half-line
,”
Appl. Math. Comput.
332
,
148
159
(
2018
).
10.
W. X.
Ma
, “
Application of the Riemann–Hilbert approach to the multicomponent AKNS integrable hierarchies
,”
Nonlinear Anal.
47
,
1
17
(
2019
).
11.
W. X.
Ma
, “
A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations
,”
Mod. Phys. Lett. B
36
,
2250094
(
2022
).
12.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear equations
,”
Stud. Appl. Math.
139
,
7
59
(
2017
).
13.
X. Y.
Tang
,
Z. F.
Liang
, and
X. Z.
Hao
, “
Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system
,”
Commun. Nonlinear Sci. Numer. Simul.
60
,
62
71
(
2018
).
14.
J. L.
Ji
and
Z. N.
Zhu
, “
On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions
,”
Commun. Nonlinear Sci. Numer. Simul.
42
,
699
708
(
2017
).
15.
J. L.
Ji
and
Z. N.
Zhu
, “
Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform
,”
J. Math. Anal. Appl.
453
,
973
984
(
2017
).
16.
F. J.
He
,
E. G.
Fan
, and
J.
Xu
, “
Long-time asymptotics for the nonlocal mKdV equation
,”
Commun. Theor. Phys.
71
,
475
488
(
2019
).
17.
P. A.
Deift
and
X.
Zhou
, “
A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation
,”
Ann. Math.
137
,
295
368
(
1993
).
18.
G. Q.
Zhang
and
Z. Y.
Yan
, “
Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions
,”
Physica D
402
,
132170
(
2020
).
19.
J. H.
Luo
and
E. G.
Fan
, “̄
-dressing method for the nonlocal mKdV equation
,”
J. Geom. Phys.
177
,
104550
(
2022
).
20.
W. X.
Ma
, “
Type (−λ, −λ*) reduced nonlocal integrable mKdV equations and their soliton solutions
,”
Appl. Math. Lett.
131
,
108074
(
2022
).
21.
W. X.
Ma
, “
Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions
,”
J. Geom. Phys.
177
,
104522
(
2022
).
22.
W. X.
Ma
, “
Reduced nonlocal integrable mKdV equations of type (−λ, λ) and their exact soliton solutions
,”
Commun. Theor. Phys.
74
,
065002
(
2022
).
23.
Y.
Rybalko
and
D.
Shepelsky
, “
Riemann–Hilbert approach for the integrable nonlocal nonlinear Schrödinger equation with step-like initial data
,”
Visn. V. N. Karazin Khark. Natl. Univ. Ser. Math. Appl. Math. Mech.
88
,
4
16
(
2018
).
24.
L. L.
Liu
and
W. G.
Zhang
, “
On a Riemann–Hilbert problem for the focusing nonlocal mKdV equation with step-like initial data
,”
Appl. Math. Lett.
116
,
107009
(
2021
).
25.
L. P.
Ai
and
J.
Xu
, “
On a Riemann–Hilbert problem for the Fokas–Lenells equation
,”
Appl. Math. Lett.
87
,
57
63
(
2019
).
26.
S. Y.
Chen
and
Z. Y.
Yan
, “
The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves
,”
Appl. Math. Lett.
95
,
65
71
(
2019
).
27.
B. B.
Hu
,
L.
Zhang
,
T. C.
Xia
, and
N.
Zhang
, “
On the Riemann–Hilbert problem of the Kundu equation
,”
Appl. Math. Comput.
381
,
125262
(
2020
).
28.
B. B.
Hu
,
L.
Zhang
, and
N.
Zhang
, “
On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation
,”
J. Comput. Appl. Math.
390
,
113393
(
2021
).
29.
B. B.
Hu
,
J.
Lin
, and
L.
Zhang
, “
On the Riemann-Hilbert problem for the integrable three-coupled Hirota system with a 4 × 4 matrix Lax pair
,”
Appl. Math. Comput.
428
,
127202
(
2022
).
30.
B. B.
Hu
,
L.
Zhang
, and
J.
Lin
, “
The initial-boundary value problems of the new two-component generalized Sasa–Satsuma equation with a 4 × 4 matrix Lax pair
,”
Anal. Math. Phys.
12
,
109
(
2022
).
31.
Y. S.
Zhang
and
S. W.
Xu
, “
The soliton solutions for the Wadati–Konno–Ichikawa equation
,”
Appl. Math. Lett.
99
,
105995
(
2020
).
32.
B. B.
Hu
,
J.
Lin
, and
L.
Zhang
, “
Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model
,”
Nonlinear Dyn.
107
,
2773
2785
(
2022
).
33.
B. F.
Feng
,
X. D.
Luo
,
M. J.
Ablowitz
, and
Z. H.
Musslimani
, “
General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions
,”
Nonlinearity
31
,
5385
5409
(
2018
).
34.
Y.
Rybalko
and
D.
Shepelsky
, “
Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation
,”
J. Math. Phys.
60
,
031504
(
2019
).
35.
Y.
Rybalko
and
D.
Shepelsky
, “
Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation
,”
Stud. Appl. Math.
147
,
872
903
(
2021
).
36.
Y.
Rybalko
and
D.
Shepelsky
, “
Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data
,”
J. Differ. Equ.
270
,
694
724
(
2021
).
37.
Y.
Rybalko
and
D.
Shepelsky
, “
Asymptotic stage of modulation instability for the nonlocal nonlinear Schrödinger equation
,”
Physica D
428
,
133060
(
2021
).
You do not currently have access to this content.