On the one hand, the primitive three-dimensional viscous equations for large-scale ocean and atmosphere dynamics are commonly used in weather and climate predictions. On the other hand, ever since the middle of the last century, it has been widely recognized that the climate variability exhibits long-time memory. In this paper, we first prove the global existence of weak solutions to the primitive equations of large-scale ocean and atmosphere dynamics with Caputo fractional time derivatives. Then we establish the existence of an absorbing set, which is positively invariant. Finally, an attractor (strictly speaking, the minimal attracting set containing all the limiting dynamics) is constructed for the time fractional primitive equations, which means that the present state of a system may have long-time influences on the states in far future. However, there was no work on the long-time behavior of the time fractional primitive equations and we fill this gap in this paper.

1.
C. S.
Cao
and
E. S.
Titi
, “
Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model
,”
Commun. Pure Appl. Math.
56
,
198
233
(
2003
).
2.
C. S.
Cao
and
E. S.
Titi
, “
Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics
,”
Ann. Math.
166
,
245
267
(
2007
).
3.
P. M.
Carvalho-Neto
and
G.
Planas
, “
Mild solutions to the time fractional Navier-Stokes equations in RN
,”
J. Differ. Equations
259
,
2948
2980
(
2015
).
4.
J. W.
Cholewa
and
T.
Dlotko
, “
Fractional Navier-Stokes equations
,”
Discrete Contin. Dyn. Syst., Ser. B
23
,
2967
2988
(
2018
).
5.
N. T.
Cong
and
H. T.
Tuan
, “
Generation of nonlocal fractional dynamical systems by fractional differential equations
,”
J. Integr. Equations Appl.
29
,
585
608
(
2017
).
6.
T. S.
Doan
and
P. E.
Kloeden
, “
Semi-dynamical systems generated by autonomous Caputo fractional differential equations
,”
Vietnam J. Math.
49
,
1305
1315
(
2021
).
7.
Y. Y.
Feng
,
L.
Li
,
J. G.
Liu
, and
X. Q.
Xu
, “
Continuous and discrete one dimensional autonomous fractional ODEs
,”
Discrete Contin. Dyn. Syst., Ser. B
23
,
3109
3135
(
2018
).
8.
I.
Grigorenko
and
E.
Grigorenko
, “
Chaotic dynamics of the fractional Lorenz system
,”
Phys. Rev. Lett.
91
,
034101
(
2003
).
9.
B. L.
Guo
and
D. W.
Huang
, “
Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics
,”
J. Math. Phys.
47
,
083508
(
2006
).
10.
B. L.
Guo
and
D. W.
Huang
, “
Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere
,”
J. Differ. Equations
251
,
457
491
(
2011
).
11.
P. E.
Kloeden
, “
An elementary inequality for dissipative Caputo fractional differential equations
,”
Fract. Calc. Appl. Anal.
26
,
2166
2174
(
2023
).
12.
L.
Li
and
J. G.
Liu
, “
A generalized definition of Caputo derivatives and its application to fractional ODEs
,”
SIAM J. Math. Anal.
50
,
2867
2900
(
2018
).
13.
L.
Li
and
J. G.
Liu
, “
Some compactness criteria for weak solutions of time fractional PDEs
,”
SIAM J. Math. Anal.
50
,
3963
3995
(
2018
).
14.
J. L.
Lions
,
R.
Temam
, and
S. H.
Wang
, “
New formulations of the primitive equations of atmosphere and applications
,”
Nonlinearity
5
,
237
288
(
1992
).
15.
A.
Majda
,
Introduction to PDEs and Waves for the Atmosphere and Ocean
,
Courant Lecture Notes in Mathematics
(
American Mathematical Society
,
New York
,
2003
).
16.
R. K.
Miller
and
A.
Feldstein
, “
Smoothness of solutions of Volterra integral equations with weakly singular kernels
,”
SIAM J. Math. Anal.
2
,
242
258
(
1971
).
17.
I.
Petras
, “
The fractional-order Lorenz-type systems: A review
,”
Fract. Calc. Appl. Anal.
25
,
362
377
(
2022
).
18.
F.
Riewe
, “
Nonconservative Lagrangian and Hamiltonian mechanics
,”
Phys. Rev. E
53
,
1890
1899
(
1996
).
19.
F.
Riewe
, “
Mechanics with fractional derivatives
,”
Phys. Rev. E
55
,
3581
3592
(
1997
).
20.
M.
Shinbrot
, “
Fractional derivatives of solutions of the Navier-Stokes equations
,”
Arch. Ration. Mech. Anal.
40
,
139
154
(
1971
).
21.
T.
Simon
, “
Comparing Fréchet and positive stable laws
,”
Electron. J. Probab.
19
,
16
(
2014
).
22.
X. C.
Sun
and
H. D.
Liu
, “
Uniqueness of the weak solution to the fractional anisotropic Navier-Stokes equations
,”
Math. Methods Appl. Sci.
44
,
253
264
(
2021
).
23.
M. S.
Tavazoei
and
M.
Haeri
, “
Describing function based methods for predicting chaos in a class of fractional order differential equations
,”
Nonlinear Dyn.
57
,
363
373
(
2009
).
24.
R.
Temam
,
J. L.
Lions
, and
S. H.
Wang
, “
Mathematical theory for the coupled atmosphere-ocean models (CAO III)
,”
J. Math. Pures Appl.
74
,
105
163
(
1995
).
25.
S. H.
Wang
, “
On the 2D model of large-scale atmospheric motion: Well-posedness and attractors
,”
Nonlinear Anal.: Theory, Methods Appl.
18
,
17
60
(
1992
).
26.
Y. J.
Wang
,
Z. Q.
Wei
, and
G. L.
Feng
, “
Attractor radius for fractional Lorenz systems and their application to the quantification of predictability limits
,”
Chaos
33
,
013105
(
2023
).
27.
Q. C.
Zeng
,
Mathematical and Physical Foundations of Numerical Weather Prediction
(
Science Press
,
Beijing
,
1979
).
28.
Y.
Zhou
and
P.
Li
, “
Weak solutions of the time-fractional Navier-Stokes equations and optimal control
,”
Comput. Math. Appl.
73
,
1016
1027
(
2017
).
You do not currently have access to this content.