In this article, we derive some new asymptotic properties of solution for a modified Camassa–Holm equation with cubic nonlinearity in weighted Sobolev spaces. Specifically, we prove that the strong solutions of Eq. (1.2) will maintain the corresponding decay properties provided the initial data ω0(x), ω0,x(x) decay logarithmically, algebraically and exponentially, respectively, which improves and extends the persistence properties of strong solutions to Eq. (1.2) obtained by Wu and Guo in paper [J. Math. Phys. 55, 081504 (2014)]. This method can be used to study the asymptotic decay properties for a class of Camassa–Holm equations.

1.
Ames
,
W. F.
and
Pachpatte
,
B. G.
,
Inequalities for Differential and Integral Equations
(
Elsevier
,
1997
).
2.
Brandolese
,
L.
, “
Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces
,”
Int. Math. Res. Not.
2012
(
22
),
5161
5181
.
3.
Bressan
,
A.
and
Constantin
,
A.
, “
Global conservative solutions of the Camassa–Holm equation
,”
Arch. Ration. Mech. Anal.
183
,
215
239
(
2007
).
4.
Bressan
,
A.
and
Constantin
,
A.
, “
Global dissipative solutions of the Camassa-Holm equation
,”
Anal. Appl.
5
,
1
27
(
2007
).
5.
Camassa
,
R.
and
Holm
,
D. D.
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
,
1661
1664
(
1993
).
6.
Camassa
,
R.
,
Holm
,
D. D.
, and
Hyman
,
J. M.
, “
A new integrable shallow water equation
,”
Adv. Appl. Mech.
31
,
1
33
(
1994
).
7.
Constantin
,
A.
, “
The Hamiltonian structure of the Camassa-Holm equation
,”
Expo. Math.
15
,
53
85
(
1997
), see https://www.researchgate.net/publication/237939854_The_Hamiltonian_Structure_of_the_Camassa-Holm_Equation
8.
Constantin
,
A.
, “
Existence of permanent and breaking waves for a shallow water equation: A geometric approach
,”
Ann. Inst. Fourier
50
,
321
362
(
2000
).
9.
Constantin
,
A.
, “
On the scattering problem for the Camassa-Holm equation
,”
Proc. R. Soc. London, Ser. A
457
,
953
970
(
2001
).
10.
Constantin
,
A.
and
Escher
,
J.
, “
Global existence and blow-up for a shallow water equation
,”
Ann. Sc. Norm. Super. Pisa
26
,
303
328
(
1998
), see https://eudml.org/doc/84330
11.
Constantin
,
A.
and
Escher
,
J.
, “
Global weak solutions for a shallow water equation
,”
Indiana Univ. Math. J.
47
,
1527
1545
(
1998
).
12.
Constantin
,
A.
and
Strauss
,
W. A.
, “
Stability of peakons
,”
Commun. Pure Appl. Math.
53
,
603
610
(
2000
).
13.
Constantin
,
A.
and
Strauss
,
W. A.
, “
Stability of the Camassa-Holm solitons
,”
J. Nonlinear Sci.
12
,
415
422
(
2002
).
14.
Dai
,
H. H.
, “
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod
,”
Acta Mech.
127
,
193
207
(
1998
).
15.
Danchin
,
R.
, “
A few remarks on the Camassa-Holm equation
,”
Differ. Integr. Equations
14
,
953
988
(
2001
).
16.
Danchin
,
R.
, “
A note on well-posedness for Camassa–Holm equation
,”
J. Differ. Equations
192
,
429
444
(
2003
).
17.
Fuchssteiner
,
B.
, “
Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation
,”
Physica D
95
,
229
243
(
1996
).
18.
Fuchssteiner
,
B.
and
Fokas
,
A. S.
, “
Symplectic structures, their Bäcklund transformations and hereditary symmetries
,”
Physica D
4
,
47
66
(
1981
).
19.
Fu
,
Y.
,
Gui
,
G. L.
,
Liu
,
Y.
, and
Qu
,
C. Z.
, “
On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity
,”
J. Differ. Equations
255
,
1905
1938
(
2013
).
20.
Gui
,
G. L.
,
Liu
,
Y.
,
Olver
,
P. J.
, and
Qu
,
C.
, “
Wave-breaking and peakons for a modified Camassa–Holm equation
,”
Commun. Math. Phys.
319
,
731
759
(
2013
).
21.
Kato
,
T.
, “
On the Korteweg-de Vries equation
,”
Manuscripta Math.
28
,
89
99
(
1979
).
22.
Ni
,
L. D.
and
Zhou
,
Y.
, “
A new asymptotic behavior of solutions to the Camassa-Holm equation
,”
Proc. Am. Math. Soc.
140
,
607
614
(
2012
).
23.
Olver
,
P. J.
and
Rosenau
,
P.
, “
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support
,”
Phys. Rev. E
53
,
1900
1906
(
1996
).
24.
Wu
,
X. L.
, “
On the Cauchy problem of a three-component Camassa–Holm equations
,”
Discrete Contin. Dyn. Syst.
36
,
2827
2854
(
2016
).
25.
Wu
,
X. L.
and
Guo
,
B. L.
, “
Persistence properties and infinite propagation for the modified 2-component Camassa–Holm equation
,”
Discrete Contin. Dyn. Syst.
33
,
3211
3223
(
2013
).
26.
Wu
,
X. L.
and
Guo
,
B. L.
, “
The exponential decay of solutions and traveling wave solutions for a modified Camassa-Holm equation with cubic nonlinearity
,”
J. Math. Phys.
55
,
081504
(
2014
).
27.
Wu
,
X. L.
and
Zhang
,
X.
, “
The initial value problem for a modified Camassa-Holm equation with cubic nonlinearity
,” Acta Math. Sci. (to be published).
28.
Yang
,
X.
and
Wu
,
X. L.
, “
Wave breaking and persistent decay of solution to a shallow water wave equation
,”
Discrete Contin. Dyn. Syst., Ser. S
9
,
2149
2165
(
2016
).
You do not currently have access to this content.