In this work we explain the relevance of the Differential Galois Theory in the semiclassical (or WKB) quantification of some two degree of freedom potentials. The key point is that the semiclassical path integral quantification around a particular solution depends on the variational equation around that solution: a very well-known object in dynamical systems and variational calculus. Then, as the variational equation is a linear ordinary differential system, it is possible to apply the Differential Galois Theory to study its solvability in closed form. We obtain closed form solutions for the semiclassical quantum fluctuations around constant velocity solutions for some systems like the classical Hermite/Verhulst, Bessel, Legendre, and Lamé potentials. We remark that some of the systems studied are not integrable, in the Liouville–Arnold sense.

1.
J. J.
Morales-Ruiz
, “
A differential Galois approach to path integrals
,”
J. Math. Phys.
61
(
5
),
2020
(
2020
).
2.
W.
Pauli
,
Lectures on Physics. VI. Selected Topics in Field Quantization
(
Courier Corporation
,
1973
).
3.
C.
DeWitt-Morette
, “
The semiclassical expansion
,”
Ann. Phys.
97
(
2
),
367
399
(
1976
).
4.
V. I.
Arnol’d
,
Mathematical Methods of Classical Mechanics
(
Springer Science & Business Media
,
2013
), Vol.
60
.
5.
P. B.
Acosta-Humánez
,
Galoisian Approach to Supersymmetric Quantum Mechanics: The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory
(
VDM Publishing
,
2010
).
6.
P. B.
Acosta-Humánez
, “
Galoisian approach to supersymmetric quantum mechanics
,” Ph.D thesis,
Universitat Politècnica de Catalunya
,
Barcelona, Spain
,
2009
.
7.
P. B.
Acosta-Humánez
,
J. J.
Morales-Ruiz
, and
J.-A.
Weil
, “
Galoisian approach to integrability of Schrödinger equation
,”
Rep. Math. Phys.
67
(
3
),
305
374
(
2011
).
8.
P.
Choquard
and
F.
Steiner
, “
The story of Van Vleck’s and Morette–Van Hove’s determinants
,”
Helv. Phys. Acta
69
,
636
654
(
1996
).
9.
S.
Jiménez
,
J. J.
Morales-Ruiz
,
R.
Sánchez-Cauce
, and
M. A.
Zurro
, “
Rational KdV potentials and differential Galois theory
,”
SIGMA
15
,
047
(
2019
).
10.
J. H.
Van Vleck
, “
The correspondence principle in the statistical interpretation of quantum mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
14
(
2
),
178
(
1928
).
11.
B. S.
DeWitt
,
Dynamical Theory of Groups and Fields
(
Gordon & Breach
,
1965
).
12.
J. J.
Morales-Ruiz
,
Differential Galois Theory and Non-integrability of Hamiltonian Systems
,
Modern Birkhäuser Classics
(
Springer
,
2013
).
13.
P. B.
Acosta-Humánez
and
E.
Suazo
, “
Liouvillian propagators, Riccati equation and differential Galois theory
,”
J. Phys. A: Math. Theor.
46
(
45
),
455203
(
2013
).
14.
P. B.
Acosta-Humánez
,
S. I.
Kryuchkov
,
E.
Suazo
, and
S. K.
Suslov
, “
Degenerate parametric amplification of squeezed photons: Explicit solutions, statistics, means and variances
,”
J. Nonlinear Opt. Phys. Mater.
24
(
02
),
1550021
(
2015
).
15.
P. B.
Acosta-Humánez
and
E.
Suazo
, “
Liouvillian propagators and degenerate parametric amplification with time-dependent pump amplitude and phase
,”
Analysis, Modelling, Optimization, and Numerical Techniques
(
Springer
,
2015
), pp.
295
307
.
16.
D.
Blázquez-Sanz
and
P.
Acosta-Humánez
, “
Non-integrability of some Hamiltonians with rational potentials
,”
Discrete Contin. Dyn. Syst. Ser. B
10
(
2/3, September 3
),
265
(
2008
).
17.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
, edition (
Dover Publications
,
2010
).
18.
R. P.
Feynman
,
The Principle of Least Action in Quantum Mechanics
, edition (
World Scientific
,
2005
), pp.
1
69
.
19.
F.
Verhulst
, “
Discrete symmetric dynamical systems at the main resonances with application to axi-symmetric galaxies
,”
Philos. Trans. R. Soc. London A
290
(
1375
),
435
465
(
1979
).
20.
M. E. H.
Ismail
and
M.
van Assche
,
Classical and Quantum Orthogonal Polynomials in One Variable
(
Cambridge University Press
,
2005
), Vol.
13
.
21.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
The University Press
,
1922
), Vol.
3
.
22.
N.
Rosen
and
P. M.
Morse
, “
On the vibrations of polyatomic molecules
,”
Phys. Rev.
42
(
2
),
10
(
1932
).
23.
J. J.
Morales-Ruiz
, “
Picard-Vessiot theory and integrability
,”
J. Geom. Phys.
87
,
314
343
(
2015
).
24.
P.
Acosta-Humánez
,
M.
Alvarez-Ramírez
, and
T. J.
Stuchi
, “
Nonintegrability of the Armbruster–Guckenheimer–Kim quartic Hamiltonian through Morales–Ramis theory
,”
SIAM J. Appl. Dyn. Syst.
17
(
1
),
78
96
(
2018
).
25.
E. T.
Whittaker
and
G. N.
Watson
,
A Course of Modern Analysis
(
Cambridge University Press
,
1902
).
26.
J. J.
Morales-Ruiz
and
C.
Simó
, “
Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations
,”
J. Differ. Equ.
129
(
1
),
111
135
(
1996
).
27.
J. J.
Morales-Ruiz
and
J. P.
Ramis
, “
Galoisian obstructions to integrability of Hamiltonian systems
,”
Methods Appl. Anal.
8
(
1
),
33
96
(
2001
).
28.
M. C.
Gutzwiller
, “
Periodic orbits and classical quantization conditions
,”
J. Math. Phys.
12
(
3
),
343
358
(
1971
).
29.
E. M.
Chudnovsky
and
J.
Tejada
,
Macroscopic Quantum Tunneling of the Magnetic Moment
(
Cambridge University Press
,
1998
).
30.
J.
Kovacic
, “
An algorithm for solving second order linear homogeneous differential equations
,”
J. Symbolic Comput.
2
(
1
),
3
43
(
1986
).
31.
P.
B Acosta-Humánez
,
J.
Tomás Lázaro
,
J.
J Morales-Ruiz
, and
C.
Pantazi
, “
On the integrability of polynomial vector fields in the plane by means of Picard–Vessiot theory
,”
Discrete Contin. Dyn. Syst. A
35
(
5
),
1767
1800
(
2015
).
32.
T.
Kimura
, “
On Riemann’s equation which are solvable by quadratures
,”
Funkc. Ekvacioj, Ser. Int.
12
,
269
281
(
1969
).
You do not currently have access to this content.