A magnetic potential is included in the so-called (quantum) dynamical confinement to open sets of ; gauge transformations are also discussed. Then, the results are applied to the Aharonov–Bohm model in the plane (the solenoid is a disk of radius greater than zero) in order to get some examples of operators confining the electron outside the solenoid.
REFERENCES
1.
R.
Adami
and A.
Teta
, “On the Aharonov-Bohm Hamiltonian
,” Lett. Math. Phys.
43
, 43
–54
(1998
).2.
Y.
Aharonov
and D.
Bohm
, “Significance of electromagnetic potentials in the quantum theory
,” Phys. Rev.
115
, 485
–491
(1959
).3.
M.
Ballesteros
and R.
Weder
, “High-velocity estimates for the scattering operator and Aharonov-Bohm effect in three dimensions
,” Commun. Math. Phys.
285
, 345
–398
(2009
).4.
M.
Becker
and H.
Batelaan
, “Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect
,” Europhys. Lett.
115
, 10011
(2016
).5.
A.
Caprez
, B.
Barwick
, and H.
Batelaan
, “Macroscopic test of the Aharonov-Bohm effect
,” Phys. Rev. Lett.
99
, 210401
(2007
).6.
L.
Da̧browski
and P.
Štovíček
, “Aharonov-Bohm effect with δ-type interaction
,” J. Math. Phys.
39
, 47
–62
(1998
).7.
W.
Ehrenberg
and R. E.
Siday
, “The refractive index in electron optics and the principles of dynamics
,” Proc. Phys. Soc., Sect. B
62
, 8
–21
(1949
).8.
B.
Helffer
, “Effet d’Aharonov Bohm sur un état borné de l’équation de Schrödinger
,” Commun. Math. Phys.
119
, 315
–329
(1988
).9.
C. R.
de Oliveira
and M.
Pereira
, “Scattering and self-adjoint extensions of the Aharonov–Bohm Hamiltonian
,” J. Phys. A: Math. Theor.
43
, 354011
(2010
).10.
C. R.
de Oliveira
and R. G.
Romano
, “Aharonov-Bohm effect without contact with the solenoid
,” J. Math. Phys.
58
, 102102
(2017
).11.
C. R.
de Oliveira
and R. G.
Romano
, “A new version of the Aharonov-Bohm effect
,” Found. Phys.
50
, 137
–146
(2020
).12.
M.
Peshkin
, “Aharonov-Bohm effect in bound states: Theoretical experimental status
,” Phys. Rev. A
23
, 360
–363
(1981
).13.
M.
Peshkin
and A.
Tonomura
, The Aharonov-Bohm Effect
(Springer
, Berlin, Heidelberg
, 1989
).14.
P.
Roux
and D.
Yafaev
, “On the mathematical theory of the Aharonov–Bohm effect
,” J. Phys. A: Math. Gen.
35
, 7481
–7492
(2002
).15.
S. N. M.
Ruijsenaars
, “The aharonov-bohm effect and scattering theory
,” Ann. Phys.
146
, 1
–34
(1983
).16.
A.
Tonomura
, N.
Osakabe
, H.
Yamada
et al, “Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave
,” Phys. Rev. Lett.
56
, 792
–795
(1986
).17.
B.
Helffer
, M.
Hoffmann-Ostenhof
, T.
Hoffmann-Ostenhof
, and M. P.
Owen
, “Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non simply connected domains
,” Commun. Math. Phys.
202
, 629
–649
(1999
).18.
B.
Colbois
, A.
El Soufi
, S.
Ilias
, and A.
Savo
, “Eigenvalues upper bounds for the magnetic Schrödinger operator
,” Commun. Anal. Geom.
30
, 779
–814
(2022
).19.
A.
Kachmar
and X.
Pan
, “Superconductivity and the Aharonov-Bohm effect
,” C. R. Math.
357
, 216
–220
(2019
).20.
M.
Kretzschmar
, “Aharonov-Bohm scattering of a wave packet of finite extension
,” Z. Phys.
185
, 84
–96
(1965
).21.
C.
Magni
and F.
Valz-Gris
, “Can elementary quantum mechanics explain the Aharonov-Bohm effect?
,” J. Math. Phys.
36
, 177
–186
(1995
).22.
C. R.
de Oliveira
and M.
Pereira
, “Mathematical justification of the Aharonov-Bohm Hamiltonian
,” J. Stat. Phys.
133
, 1175
–1184
(2008
).23.
C. R.
de Oliveira
and M.
Pereira
, “Impenetrability of Aharonov–Bohm solenoids: Proof of norm resolvent convergence
,” Lett. Math. Phys.
95
, 41
–51
(2011
).24.
G.
Nenciu
and I.
Nenciu
, “On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in
,” Ann. Henri Poincare
10
, 377
–394
(2009
).25.
Y.
Colin de Verdière
and F.
Truc
, “Confining quantum particles with a purely magnetic field
,” Ann. Inst. Fourier
60
, 2333
–2356
(2010
).26.
A.
Posilicano
, “Self-adjoint extensions by additive perturbations
,” Ann. Scuola Norm. Sup. Pisa Cl. Sci.
5
, 1
–20
(2003
).27.
A.
Posilicano
, “Self-adjoint extensions of restrictions
,” Oper. Matrices
2
, 483
–506
(2008
).28.
A. P. N. C.
Dias
and J. N.
Prata
, “Self-adjoint, globally defined Hamiltonian operators for systems with boundaries
,” Commun. Pure Appl. Anal.
10
, 1687
–1706
(2011
).29.
N. C.
Dias
and J. N.
Prata
, “A global, dynamical formulation of quantum confined systems
,” Proc. Estonian Acad. Sci.
59
, 290
–293
(2010
).30.
E.
Shech
, “Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov-Bohm effect
,” Synthese
195
, 4839
–4863
(2018
).31.
J.
Earman
, “The role of idealizations in the Aharonov-Bohm effect
,” Synthese
196
, 1991
–2019
(2019
).32.
K.
Schmüdgen
, Unbounded Self-Adjoint Operators on Hilbert Space
(Springer
, 2012
).33.
A. V. M. E. E.
Jenkins
and M.
Trott
, “On gauge invariance and minimal coupling
,” J. High Energy Phys.
2023
, 63
.34.
I. V.
Lindell
, Differential Form in Electromagnetic
(John Wiley
, 2004
).35.
H.
Leinfelder
, “Gauge invariance of Schrödinger operators and related spectral properties
,” J. Oper. Theory
9
, 163
–179
(1983
).36.
C.
R de Oliveira
and W.
Monteiro
, “All self-adjoint extensions of the magnetic Laplacian in nonsmooth domains and gauge transformations
,” Ann. Scuola Norm. Sup. Pisa C. Sci.
22
, 1805
–1841
(2021
).37.
38.
D.
Gilbarg
and N. S.
Trudinger
, Elliptic Partial Differential Equations of Second Order
(Springer
, 2001
).39.
40.
J. L.
Lions
and E.
Magenes
, Non-Homogeneous Boundary Value Problems and Applications
(Springer
, 1972
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.