A magnetic potential is included in the so-called (quantum) dynamical confinement to open sets of Rd; gauge transformations are also discussed. Then, the results are applied to the Aharonov–Bohm model in the plane (the solenoid is a disk of radius greater than zero) in order to get some examples of operators confining the electron outside the solenoid.

1.
R.
Adami
and
A.
Teta
, “
On the Aharonov-Bohm Hamiltonian
,”
Lett. Math. Phys.
43
,
43
54
(
1998
).
2.
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in the quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
3.
M.
Ballesteros
and
R.
Weder
, “
High-velocity estimates for the scattering operator and Aharonov-Bohm effect in three dimensions
,”
Commun. Math. Phys.
285
,
345
398
(
2009
).
4.
M.
Becker
and
H.
Batelaan
, “
Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect
,”
Europhys. Lett.
115
,
10011
(
2016
).
5.
A.
Caprez
,
B.
Barwick
, and
H.
Batelaan
, “
Macroscopic test of the Aharonov-Bohm effect
,”
Phys. Rev. Lett.
99
,
210401
(
2007
).
6.
L.
Da̧browski
and
P.
Štovíček
, “
Aharonov-Bohm effect with δ-type interaction
,”
J. Math. Phys.
39
,
47
62
(
1998
).
7.
W.
Ehrenberg
and
R. E.
Siday
, “
The refractive index in electron optics and the principles of dynamics
,”
Proc. Phys. Soc., Sect. B
62
,
8
21
(
1949
).
8.
B.
Helffer
, “
Effet d’Aharonov Bohm sur un état borné de l’équation de Schrödinger
,”
Commun. Math. Phys.
119
,
315
329
(
1988
).
9.
C. R.
de Oliveira
and
M.
Pereira
, “
Scattering and self-adjoint extensions of the Aharonov–Bohm Hamiltonian
,”
J. Phys. A: Math. Theor.
43
,
354011
(
2010
).
10.
C. R.
de Oliveira
and
R. G.
Romano
, “
Aharonov-Bohm effect without contact with the solenoid
,”
J. Math. Phys.
58
,
102102
(
2017
).
11.
C. R.
de Oliveira
and
R. G.
Romano
, “
A new version of the Aharonov-Bohm effect
,”
Found. Phys.
50
,
137
146
(
2020
).
12.
M.
Peshkin
, “
Aharonov-Bohm effect in bound states: Theoretical experimental status
,”
Phys. Rev. A
23
,
360
363
(
1981
).
13.
M.
Peshkin
and
A.
Tonomura
,
The Aharonov-Bohm Effect
(
Springer
,
Berlin, Heidelberg
,
1989
).
14.
P.
Roux
and
D.
Yafaev
, “
On the mathematical theory of the Aharonov–Bohm effect
,”
J. Phys. A: Math. Gen.
35
,
7481
7492
(
2002
).
15.
S. N. M.
Ruijsenaars
, “
The aharonov-bohm effect and scattering theory
,”
Ann. Phys.
146
,
1
34
(
1983
).
16.
A.
Tonomura
,
N.
Osakabe
,
H.
Yamada
et al, “
Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave
,”
Phys. Rev. Lett.
56
,
792
795
(
1986
).
17.
B.
Helffer
,
M.
Hoffmann-Ostenhof
,
T.
Hoffmann-Ostenhof
, and
M. P.
Owen
, “
Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non simply connected domains
,”
Commun. Math. Phys.
202
,
629
649
(
1999
).
18.
B.
Colbois
,
A.
El Soufi
,
S.
Ilias
, and
A.
Savo
, “
Eigenvalues upper bounds for the magnetic Schrödinger operator
,”
Commun. Anal. Geom.
30
,
779
814
(
2022
).
19.
A.
Kachmar
and
X.
Pan
, “
Superconductivity and the Aharonov-Bohm effect
,”
C. R. Math.
357
,
216
220
(
2019
).
20.
M.
Kretzschmar
, “
Aharonov-Bohm scattering of a wave packet of finite extension
,”
Z. Phys.
185
,
84
96
(
1965
).
21.
C.
Magni
and
F.
Valz-Gris
, “
Can elementary quantum mechanics explain the Aharonov-Bohm effect?
,”
J. Math. Phys.
36
,
177
186
(
1995
).
22.
C. R.
de Oliveira
and
M.
Pereira
, “
Mathematical justification of the Aharonov-Bohm Hamiltonian
,”
J. Stat. Phys.
133
,
1175
1184
(
2008
).
23.
C. R.
de Oliveira
and
M.
Pereira
, “
Impenetrability of Aharonov–Bohm solenoids: Proof of norm resolvent convergence
,”
Lett. Math. Phys.
95
,
41
51
(
2011
).
24.
G.
Nenciu
and
I.
Nenciu
, “
On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in Rd
,”
Ann. Henri Poincare
10
,
377
394
(
2009
).
25.
Y.
Colin de Verdière
and
F.
Truc
, “
Confining quantum particles with a purely magnetic field
,”
Ann. Inst. Fourier
60
,
2333
2356
(
2010
).
26.
A.
Posilicano
, “
Self-adjoint extensions by additive perturbations
,”
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
5
,
1
20
(
2003
).
27.
A.
Posilicano
, “
Self-adjoint extensions of restrictions
,”
Oper. Matrices
2
,
483
506
(
2008
).
28.
A. P. N. C.
Dias
and
J. N.
Prata
, “
Self-adjoint, globally defined Hamiltonian operators for systems with boundaries
,”
Commun. Pure Appl. Anal.
10
,
1687
1706
(
2011
).
29.
N. C.
Dias
and
J. N.
Prata
, “
A global, dynamical formulation of quantum confined systems
,”
Proc. Estonian Acad. Sci.
59
,
290
293
(
2010
).
30.
E.
Shech
, “
Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov-Bohm effect
,”
Synthese
195
,
4839
4863
(
2018
).
31.
J.
Earman
, “
The role of idealizations in the Aharonov-Bohm effect
,”
Synthese
196
,
1991
2019
(
2019
).
32.
K.
Schmüdgen
,
Unbounded Self-Adjoint Operators on Hilbert Space
(
Springer
,
2012
).
33.
A. V. M. E. E.
Jenkins
and
M.
Trott
, “
On gauge invariance and minimal coupling
,”
J. High Energy Phys.
2023
,
63
.
34.
I. V.
Lindell
,
Differential Form in Electromagnetic
(
John Wiley
,
2004
).
35.
H.
Leinfelder
, “
Gauge invariance of Schrödinger operators and related spectral properties
,”
J. Oper. Theory
9
,
163
179
(
1983
).
36.
C.
R de Oliveira
and
W.
Monteiro
, “
All self-adjoint extensions of the magnetic Laplacian in nonsmooth domains and gauge transformations
,”
Ann. Scuola Norm. Sup. Pisa C. Sci.
22
,
1805
1841
(
2021
).
37.
W. H.
Lieb
and
M.
Loss
,
Analysis
(
American Mathematical Society
,
2001
).
38.
D.
Gilbarg
and
N. S.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
2001
).
39.
G.
Grubb
,
Distribution and Operators
(
Springer
,
2009
).
40.
J. L.
Lions
and
E.
Magenes
,
Non-Homogeneous Boundary Value Problems and Applications
(
Springer
,
1972
).
You do not currently have access to this content.