In this paper, we prove the global well-posedness of the Cauchy problem to the 3-D compressible Hall-magnetohydrodynamic (MHD) system supplemented with a class of large initial data in Besov spaces. By exploiting the intrinsic structure of the compressible Hall-MHD equations, we obtain the diffusion and the dispersive effects for the mixed hyperbolic-parabolic system. Based on this important observation, we prove that the compressible Hall-MHD system exists a global solution with the initial data close to a stable equilibrium.

1.
Acheritogaray
,
M.
,
Degond
,
P.
,
Frouvelle
,
A.
, and
Liu
,
J. G.
, “
Kinetic formulation and global existence for the Hall-magneto-hydrodynamics system
,”
Kinet. Relat. Models
4
,
901
918
(
2011
).
2.
Alfvén
,
H.
, “
Existence of electromagnetic-hydrodynamic waves
,”
Nature
150
,
405
406
(
1942
).
3.
Alfvén
,
H.
,
Cosmical Electrodynamics: Fundamental Principles
,
The International Series of Monographs on Physics
(
Oxford University Press
,
1953
).
4.
Bahouri
,
H.
,
Chemin
,
J. Y.
, and
Danchin
,
R.
,
Fourier Analysis and Nonlinear Partial Differential Equations
,
Fundamental Principles of Mathematical Sciences Vol. 343
(
Springer
,
Heidelberg
,
2011
).
5.
Balbus
,
S. A.
and
Terquem
,
C.
, “
Linear analysis of the Hall effect in protostellar disks
,”
Astrophys. J.
552
,
235
247
(
2001
).
6.
Benvenutti
,
M. J.
and
Ferreira
,
L. C. F.
, “
Existence and stability of global large strong solutions for the Hall-MHD system
,”
Differ. Integr. Equations
29
,
977
1000
(
2016
).
7.
Bony
,
J. M.
, “
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
,”
Ann. Sci. Éc. Norm. Supér.
14
,
209
246
(
1981
).
8.
Campos
,
L. C.
, “
On hydromagnetic waves in atmospheres with application to the sun
,”
Theor. Comput. Fluid Dyn.
10
,
37
70
(
1998
).
9.
Chae
,
D. H.
,
Degond
,
P.
, and
Liu
,
J. G.
, “
Well-posedness for Hall-magnetohydrodynamics
,”
Ann. Inst. Henri Poincare, Sect. C Non Linéaire Anal.
31
,
555
565
(
2014
).
10.
Chae
,
D. H.
and
Schonbek
,
M.
, “
On the temporal decay for the Hall-magnetohydrodynamic equations
,”
J. Differ. Equations
255
,
3971
3982
(
2013
).
11.
Chae
,
D. H.
and
Wolf
,
J.
, “
On partial regularity for the steady Hall magnetohydrodynamics system
,”
Commun. Math. Phys.
339
,
1147
1166
(
2015
).
12.
Chae
,
D. H.
and
Wolf
,
J.
, “
On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane
,”
SIAM J. Math. Anal.
48
,
443
469
(
2016
).
13.
Charve
,
F.
and
Danchin
,
R.
, “
A global existence result for the compressible Navier–Stokes equations in the critical Lp framework
,”
Arch. Ration. Mech. Anal.
198
,
233
271
(
2010
).
14.
Chemin
,
J. Y.
and
Lerner
,
N.
, “
Flow of non-Lipschitz vector-fields and Navier-Stokes equations
,”
J. Differ. Equations
121
,
314
328
(
1995
).
15.
Chen
,
Q. L.
,
Miao
,
C. X.
, and
Zhang
,
Z. F.
, “
Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity
,”
Commun. Pure Appl. Math.
63
,
1173
1224
(
2010
).
16.
Danchin
,
R.
, “
Global existence in critical spaces for compressible Navier–Stokes equations
,”
Inventiones Math.
141
,
579
614
(
2000
).
17.
Danchin
,
R.
, “
Zero Mach number limit in critical spaces for compressible Navier-Stokes equations
,”
Ann. Sci. Éc. Norm. Supér.
35
,
27
75
(
2001
).
18.
Danchin
,
R.
and
Tan
,
J.
, “
On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces
,”
Commun. Partial Differ. Equations
46
,
31
65
(
2021
).
19.
Danchin
,
R.
and
Tan
,
J.
, “
The global solvability of the Hall-magnetohydrodynamics system in critical sobolev spaces
,”
Commun. Contemp. Math.
24
,
2150099
(
2022
).
20.
Duan
,
N.
, “
Global well-posedness and analyticity of solutions to three-dimensional Hall-MHD equations
,”
J. Math. Anal. Appl.
463
,
506
516
(
2018
).
21.
Dumas
,
E.
and
Sueur
,
F.
, “
On the weak solutions to the Maxwell–Landau–Lifshitz equations and to the Hall-magneto-hydrodynamic equations
,”
Commun. Math. Phys.
330
,
1179
1225
(
2014
).
22.
Fan
,
J.
,
Alsaedi
,
A.
,
Fukumoto
,
Y.
,
Hayat
,
T.
, and
Zhou
,
Y.
, “
A regularity criterion for the density-dependent Hall-magnetohydrodynamics
,”
Z. Anal. Anwend.
34
,
277
284
(
2015
).
23.
Fan
,
J.
,
Alsaedi
,
A.
,
Hayat
,
T.
,
Nakamura
,
G.
, and
Zhou
,
Y.
, “
On strong solutions to the compressible Hall-magnetohydrodynamic system
,”
Nonlinear Anal.: Real World Appl.
22
,
423
434
(
2015
).
24.
Fan
,
J.
,
Fukumoto
,
Y.
,
Nakamura
,
G.
, and
Zhou
,
Y.
, “
Regularity criteria for the incompressible Hall-MHD system
,”
Z. Angew. Math. Mech.
95
,
1156
1160
(
2015
).
25.
Fan
,
J.
,
Jia
,
X.
,
Nakamura
,
G.
, and
Zhou
,
Y.
, “
On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects
,”
Z. Angew. Math. Phys.
66
,
1695
1706
(
2015
).
26.
Fan
,
J. S.
,
Samet
,
B.
, and
Zhou
,
Y.
, “
A regularity criterion for a generalized Hall-MHD system
,”
Comput. Math. Appl.
74
,
2438
2443
(
2017
).
27.
Fang
,
D. Y.
,
Zhang
,
T.
, and
Zi
,
R. Z.
, “
Global solutions to the isentropic compressible Navier–Stokes equations with a class of large initial data
,”
SIAM J. Math. Anal.
50
,
4983
5026
(
2018
).
28.
Forbes
,
T.
, “
Magnetic reconnection in solar flares
,”
Geophys. Astrophys. Fluid Dyn.
62
(
1–4
),
15
36
, (
1991
).
29.
Guo
,
Y.
and
Wang
,
Y.
, “
Decay of dissipative equations and negative Sobolev spaces
,”
Commun. Partial Differ. Equations
37
,
2165
2208
(
2012
).
30.
Han
,
B.
, “
Global strong solution for the density dependent incompressible viscoelastic fluids in the critical Lp framework
,”
Nonlinear Anal.
132
,
337
358
(
2016
).
31.
Han
,
B.
and
Zi
,
R. Z.
, “
Dispersive effect and global well-posedness of the compressible viscoelastic fluids
,”
J. Differ. Equations
269
,
9254
9296
(
2020
).
32.
Haspot
,
B.
, “
Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces
,”
J. Differ. Equations
251
,
2262
2295
(
2011
).
33.
He
,
F.
,
Ahmad
,
B.
,
Hayat
,
T.
, and
Zhou
,
Y.
, “
On regularity criteria for the 3D Hall-MHD equations in terms of the velocity
,”
Nonlinear Anal.: Real World Appl.
32
,
35
51
(
2016
).
34.
Hoff
,
D.
, “
Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data
,”
J. Differ. Equations
120
,
215
254
(
1995
).
35.
Homann
,
H.
and
Grauer
,
R.
, “
Bifurcation analysis of magnetic reconnection in Hall-MHD-systems
,”
Physica D
208
(
1–2
),
59
72
(
2005
).
36.
Huang
,
X. D.
,
Li
,
J.
, and
Xin
,
Z. P.
,
Classical Solutions to the Multi-Dimensional Compressible Navier-Stokes Equations in the Presence of Vacuum
(
International Press
,
Boston, MA
,
2020
), pp.
339
360
.
37.
Huba
,
J. D.
and
Rudakov
,
L. I.
, “
Hall magnetohydrodynamics of neutral layers
,”
Phys. Plasmas
10
,
3139
3150
(
2003
).
38.
Lei
,
Z.
and
Lin
,
F. H.
, “
Global mild solutions of Navier–Stokes equations
,”
Commun. Pure Appl. Math.
64
,
1297
1304
(
2011
).
39.
Li
,
J. L.
,
Yu
,
Y. H.
, and
Zhu
,
W. P.
, “
A class large solution of the 3D Hall-magnetohydrodynamic equations
,”
J. Differ. Equations
268
,
5811
5822
(
2020
).
40.
Lighthill
,
M.
, “
Studies on magneto-hydrodynamic waves and other anisotropic wave motions
,”
Philos. Trans. R. Soc., A
252
,
397
430
(
1960
).
41.
Mininni
,
P. D.
,
Gomez
,
D. O.
, and
Mahajan
,
S. M.
, “
Dynamo action in Hall magnetohydrodynamics
,”
Astrophys. J.
567
,
81
83
(
2003
).
42.
Shalybkov
,
D. A.
and
Urpin
,
V. A.
, “
The Hall effect and the decay of magnetic fields
,”
Astron. Astrophys.
321
,
685
690
(
1997
).
43.
Wan
,
R.
and
Zhou
,
Y.
, “
On global existence, energy decay and blow-up criteria for the Hall-MHD system
,”
J. Differ. Equations
259
(
11
),
5982
6008
(
2015
).
44.
Wan
,
R.
and
Zhou
,
Y.
, “
Global well-posedness, BKM blow-up criteria and zero h limit for the 3D incompressible Hall-MHD equations
,”
J. Differ. Equations
267
,
3724
3747
(
2019
).
45.
Wan
,
R.
and
Zhou
,
Y.
, “
Global well-posedness for the 3D incompressible Hall-magnetohydrodynamic equations with Fujita–Kato type initial data
,”
J. Math. Fluid Mech.
21
,
5
(
2019
).
46.
Wardle
,
M.
, “
Star formation and the Hall effect
,”
Astrophys. Space Sci.
292
,
317
323
(
2005
).
47.
Weng
,
S.
, “
On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system
,”
J. Differ. Equations
260
,
6504
6524
(
2016
).
48.
Weng
,
S.
, “
Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations
,”
J. Funct. Anal.
270
,
2168
2187
(
2016
).
49.
Wu
,
X.
,
Yu
,
Y.
, and
Tang
,
Y.
, “
Well-posedness for the incompressible Hall-MHD equations in low regularity spaces
,”
Mediterr. J. Math.
15
(
2
),
48
(
2018
).
50.
Xu
,
F.
,
Zhang
,
X.
,
Wu
,
Y.
, and
Liu
,
L.
, “
Global existence and temporal decay for the 3D compressible Hall-magnetohydrodynamic system
,”
J. Math. Anal. Appl.
438
,
285
310
(
2016
).
51.
Zhao
,
X.
, “
Decay of solutions to a new Hall-MHD system in R3
,”
C. R. Math.
355
,
310
317
(
2017
).
You do not currently have access to this content.