We establish factoriality and non-injectivity in full generality for the mixed q-Araki–Woods von Neumann algebra associated to a separable real Hilbert space HR with dimHR2, a strongly continuous one parameter group of orthogonal transformations on HR, a direct sum decomposition HR=iHR(i), and a real symmetric matrix (qij) with supi,j|qij| < 1. This is achieved by first proving the existence of conjugate variables for a finite number of generators of the algebras (when dimHR<), following the lines of Miyagawa–Speicher and Kumar–Skalski–Wasilewski. The conjugate variables belong to the factors in question and satisfy certain Lipschitz conditions.

1.
R.
Speicher
, “
Generalized statistics of macroscopic fields
,”
Lett. Math. Phys.
27
(
2
),
97
104
(
1993
).
2.
M.
Bożejko
and
R.
Speicher
, “
Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces
,”
Math. Ann.
300
,
97
120
(
1994
).
3.
M.
Bożejko
and
R.
Speicher
, “
An example of a generalized Brownian motion
,”
Commun. Math. Phys.
137
(
3
),
519
531
(
1991
).
4.
É.
Ricard
, “
Factoriality of q-Gaussian von Neumann algebras
,”
Commun. Math. Phys.
257
(
3
),
659
665
(
2005
).
5.
M.
Bożejko
,
B.
Kümmerer
, and
R.
Speicher
, “
q-Gaussian processes: Non-commutative and classical aspects
,”
Commun. Math. Phys.
185
(
1
),
129
154
(
1997
).
6.
I.
Królak
, “
Factoriality of von Neumann algebras connected with general commutation relations–finite dimensional case
,”
Quantum Probability
(
Banach Center Publications
,
2006
), Vol.
73
, pp.
277
284
.
7.
P.
Śniady
, “
Factoriality of Bożejko–Speicher von Neumann algebras
,”
Commun. Math. Phys.
246
(
3
),
561
567
(
2004
).
8.
A.
Skalski
and
S.
Wang
, “
Remarks on factoriality and q-deformations
,”
Proc. Am. Math. Soc.
146
(
9
),
3813
3823
(
2018
).
9.
I.
Królak
, “
Wick product for commutation relations connected with Yang–Baxter operators and new constructions of factors
,”
Commun. Math. Phys.
210
(
3
),
685
701
(
2000
).
10.
B.
Nelson
and
Q.
Zeng
, “
An application of free transport to mixed q-Gaussian algebras
,”
Proc. Am. Math. Soc.
144
(
10
),
4357
4366
(
2016
).
11.
D.
Shlyakhtenko
, “
Free quasi-free states
,”
Pac. J. Math.
177
(
2
),
329
368
(
1997
).
12.
F.
Hiai
,
q-deformed Araki-Woods algebras
, in “
Operator Algebras and Mathematical Physics
(
Constanta
,
2001
), pp.
169
202
, Theta, Bucharest, 2003.
13.
B.
Nelson
, “
Free monotone transport without a trace
,”
Commun. Math. Phys.
334
(
3
),
1245
1298
(
2015
).
14.
P.
Bikram
and
K.
Mukherjee
, “
Generator masas in q-deformed Araki–Woods von Neumann algebras and factoriality
,”
J. Funct. Anal.
273
(
4
),
1443
1478
(
2017
).
15.
P.
Bikram
,
K.
Mukherjee
,
É.
Ricard
, and
S.
Wang
, “
On the factoriality of q-deformed Araki–Woods von Neumann algebras
,”
Commun. Math. Phys.
398
(
2
),
797
821
(
2023
).
16.
M.
Kumar
,
A.
Skalski
, and
M.
Wasilewski
, “
Full solution of the factoriality question for q-Araki–Woods von Neumann algebras via conjugate variables
,”
Commun. Math. Phys.
402
,
157
167
(
2023
).
17.
P.
Bikram
,
R.
Kumar R.
, and
K.
Mukherjee
, “
Mixed q-deformed Araki–Woods von Neumann algebras
,”
J. Noncommut. Geom.
(to be published).
18.
A.
Miyagawa
and
R.
Speicher
, “
A dual and conjugate system for q-Gaussians for all q
,”
Adv. Math.
413
,
108834
(
2023
).
19.
B.
Nelson
, “
On finite free Fisher information for eigenvectors of a modular operator
,”
J. Funct. Anal.
273
(
7
),
2292
2352
(
2017
).
20.
Y.
Dabrowski
and
A.
Ioana
, “
Unbounded derivations, free dilations, and indecomposability results for II1 factors
,”
Trans. Am. Math. Soc.
368
(
7
),
4525
4560
(
2015
).
21.
P.
Bikram
,
R.
Kumar R.
, and
K.
Mukherjee
, “
On non-injectivity of mixed q-deformed Araki–Woods von Neumann algebras
,”
Kyoto J. Math.
(to be published).
22.
A.
Nou
, “
Non injectivity of the q-deformed von Neumann algebra
,”
Math. Ann.
330
(
1
),
17
38
(
2004
).
23.
M.
Bożejko
, “
Completely positive maps on Coxeter groups and the ultracontractivity of the q-Ornstein-Uhlenbeck semigroup
,” in
Quantum Probability: Proceedings of the Workshop held in Gdańsk
, July 1–6, 1997, edited by
R.
Alicki
,
M.
Bożejko
, and
W. A.
Majewski
(
Banach Center Publications
,
1998
), Vol.
43
, pp.
87
93
.
24.
Z.
Yang
, “
A conjugate system for twisted Araki-Woods von Neumann algebras of finite dimensional spaces
,” arXiv:2304.13856 (
2023
).
25.
A.
Connes
, “
Une classification des facteurs de type III
,”
Ann. Sci. Ec. Norm. Super.
6
,
133
252
(
1973
).
You do not currently have access to this content.