The generalization of ten conserved quantities (Newman–Penrose constants) defined in asympotically flat vacuum spacetimes to asymptotically flat Einstein-scalar spacetimes is studied. It is found that these quantites, when suitably modified, are also conserved in a Einstein-scalar system.

1.
E. T.
Newman
and
R.
Penrose
, “
New conservation laws for zero rest-mass fields in asymptotically flat space-time
,”
Proc. R. Soc. A
305
,
175
204
(
1968
).
2.
A. R.
Exton
,
E. T.
Newman
, and
R.
Penrose
, “
Conserved quantities in the Einstein-Maxwell theory
,”
J. Math. Phys.
10
,
1566
1570
(
1969
).
3.
P. T.
Chrusciel
,
M. A. H.
MacCallum
, and
D. B.
Singleton
, “
Gravitational waves in general relativity XIV. Bondi expansions and the ‘polyhomogeneity’ of Scri
,”
Philos. Trans. R. Soc. London, Ser. A
350
,
113
141
(
1995
).
4.
J. A. V.
Kroon
, “
Conserved quantities for polyhomogeneous spacetimes
,”
Classical Quantum Gravity
15
,
2479
2491
(
1998
).
5.
J. A.
Valiente Kroon
, “
Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes
,”
Classical Quantum Gravity
16
,
1653
1665
(
1999
).
6.
S.
Bai
,
Z.
Cao
,
X.
Gong
,
Y.
Shang
,
X.
Wu
, and
Y. K.
Lau
, “
Light cone structure near null infinity of the Kerr metric
,”
Phys. Rev. D
75
,
044003
(
2007
).
7.
X.
Gong
,
Y.
Shang
,
S.
Bai
,
Z.
Cao
,
Z.
Luo
, and
Y. K.
Lau
, “
Newman-Penrose constants of the Kerr-Newman metric
,”
Phys. Rev. D
76
,
107501
(
2007
).
8.
X.
Wu
and
Y.
Shang
, “
On Newman–Penrose constants of stationary spacetimes
,”
Classical Quantum Gravity
24
,
679
690
(
2007
).
9.
X.
Zhang
,
X.
Wu
, and
S.
Gao
, “
Newman-Penrose constants of stationary electrovacuum space-times
,”
Phys. Rev. D
79
,
104001
(
2009
).
10.
H.
Friedrich
and
J.
Kannar
, “
Bondi-type systems near spacelike infinity and the calculation of the Newman–Penrose constants
,”
J. Math. Phys.
41
,
2195
2232
(
2000
).
11.
R.
Lazkoz
and
J. A.
Valiente Kroon
, “
Boost-rotation symmetric type D radiative metrics in Bondi coordinates
,”
Phys. Rev. D
62
,
084033
(
2000
).
12.
S.
Dain
and
J. A.
Valiente Kroon
, “
Conserved quantities in a black hole collision
,”
Classical Quantum Gravity
19
,
811
815
(
2002
).
13.
R.
Geroch
, “
Multipole moments. II. Curved space
,”
J. Math. Phys.
11
,
2580
2588
(
1970
).
14.
R. O.
Hansen
, “
Multipole moments of stationary space-times
,”
J. Math. Phys.
15
,
46
52
(
1974
).
15.
T.
Backdahl
, “
Relating the Newman–Penrose constants to the Geroch–Hansen multipole moments
,”
Classical Quantum Gravity
26
,
175021
(
2009
).
16.
R.
Farkas
and
L. B.
Szabados
, “
On quasi-local charges and Newman–Penrose type quantities in Yang–Mills theories
,”
Classical Quantum Gravity
28
,
145013
(
2011
).
17.
E. T.
Newman
and
R.
Penrose
, “
An approach to gravitational radiation by a method of spin coefficients
,”
J. Math. Phys.
3
,
566
578
(
1962
).
18.
E. T.
Newman
and
T. W. J.
Unti
, “
Behavior of asymptotically flat empty spaces
,”
J. Math. Phys.
3
,
891
901
(
1962
).
19.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Oxford University Press
,
New York
,
1983
).
20.
X.
He
,
Z.
Cao
,
X.
Fang
,
J.
Jing
, and
X.
Wu
, “
On uniqueness of static asymptotically anti-de Sitter black hole
,”
Classical Quantum Gravity
37
,
245004
(
2020
).
21.
R.
Penrose
and
W.
Rindler
,
Spinors and Space-Time: Vol. 2, Spinor and Twistor Methods in Space-Time Geometry
,
2nd ed.
(
Cambridge University Press
,
Cambridge
,
1988
).
22.
J.
Frauendiener
and
L. B.
Szabados
, “
The kernel of the edth operators on higher-genus spacelike 2-surfaces
,”
Classical Quantum Gravity
18
,
1003
1014
(
2001
).
You do not currently have access to this content.