We study flat bands of periodic graphs in a Euclidean space. These are infinitely degenerate eigenvalues of the corresponding adjacency matrix, with eigenvectors of compact support. We provide some optimal recipes to generate desired bands and some sufficient conditions for a graph to have flat bands, we characterize the set of flat bands whose eigenvectors occupy a single cell, and we compute the list of such bands for small cells. We next discuss the stability and rarity of flat bands in special cases. Additional folklore results are proved, and many questions are still open.
REFERENCES
1.
Anantharaman
, N.
and Sabri
, M.
, “Recent results of quantum ergodicity on graphs and further investigation
,” Ann. Fac. Sci. Toulouse: Math.
28
, 559
–592
(2019
).2.
Aomoto
, K.
, “Point spectrum on a quasihomogeneous tree
,” Pac. J. Math.
147
, 231
–242
(1991
).3.
Banks
, J.
, Garza-Vargas
, J.
, and Mukherjee
, S.
, “Point spectrum of periodic operators on universal covering trees
,” Int. Math. Res. Not.
2022
, 17713
–17744
.4.
Boutet de Monvel
, A.
and Sabri
, M.
, “Ballistic transport in periodic and random media
,” in From Complex Analysis to Operator Theory: A Panorama. In Memory of Sergey Naboko
, Operator Theory: Advances and Applications series (Springer/ Birkhäuser, 2023), Vol. 291.5.
Creutz
, M.
, “Aspects of chiral symmetry and the lattice
,” Rev. Mod. Phys.
73
, 119
–150
(2001
).6.
Damanik
, D.
, Embree
, M.
, Fillman
, J.
, and Mei
, M.
, “Discontinuities of the integrated density of states for Laplacians associated with Penrose and Amman-Beenker tilings
,” Exp. Math.
(unpublished).7.
Fillman
, J.
, Liu
, W.
, and Matos
, R.
, “Irreducibility of the Bloch variety for finite-range Schrödinger operators
,” J. Funct. Anal.
283
, 109670
(2022
).8.
Fillman
, J.
, Liu
, W.
, and Matos
, R.
, “Algebraic properties of the Fermi variety for periodic graph operators
,” arXiv:2305.06471.9.
Flach
, S.
, Leykam
, D.
, Bodyfelt
, J. D.
, Matthies
, P.
, and Desyatnikov
, A. S.
, “Detangling flat bands into Fano lattices
,” Europhys. Lett.
105
, 30001
(2014
).10.
Higuchi
, Y.
and Nomura
, Y.
, “Spectral structure of the Laplacian on a covering graph
,” Eur. J. Combinatorics
30
, 570
–585
(2009
).11.
Kato
, T.
, Perturbation Theory for Linear Operators
, reprint of the 1980 ed.
, Classics in Mathematics
(Springer-Verlag
, Berlin
, 1995
).12.
Kerner
, J.
, Täufer
, M.
, and Wintermayr
, J.
, “Robustness of flat bands on the perturbed Kagome and the perturbed Super-Kagome lattice
,” arXiv:2301.05076.13.
Kollár
, A. J.
, Fitzpatrick
, M.
, Sarnak
, P.
, and Houck
, A. A.
, “Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics
,” Commun. Math. Phys.
376
, 1909
–1956
(2020
).14.
Kollár
, A. J.
and Sarnak
, P.
, “Gap sets for the spectra of cubic graphs
,” Commun. Am. Math. Soc.
1
, 1
–38
(2021
).15.
Korotyaev
, E.
and Saburova
, N.
, “Schrödinger operators on periodic discrete graphs
,” J. Math. Anal. Appl.
420
, 576
–611
(2014
).16.
Korotyaev
, E.
and Saburova
, N.
, “Spectral estimates for Schrödinger operators on periodic discrete graphs
,” St. Petersburg Math. J.
30
, 667
–698
(2019
).17.
Li
, W.
and Shipman
, S. P.
, “Irreducibility of the Fermi surface for planar periodic graph operators
,” Lett. Math. Phys.
110
, 2543
–2572
(2020
).18.
Liu
, W.
, “Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues
,” Geom. Funct. Anal.
32
, 1
–30
(2022
).19.
McKenzie
, T.
and Sabri
, M.
, “Quantum ergodicity for periodic graphs
,” Commun. Math. Phys. (to be published); arXiv:2208.12685.20.
Morfonios
, C. V.
, Röntgen
, M.
, Pyzh
, M.
, and Schmelcher
, P.
, “Flat bands by latent symmetry
,” Phys. Rev. B
104
, 035105
(2021
).21.
Peyerimhoff
, N.
and Täufer
, M.
, “Eigenfunctions and the integrated density of states on Archimedean tilings
,” J. Spectral Theory
11
, 461
–488
(2021
).22.
Rhim
, J.-W.
and Yang
, B.-J.
, “Classification of flat bands according to the band-crossing singularity of Bloch wave functions
,” Phys. Rev. B
99
, 045107
(2019
).23.
Röntgen
, M.
, Morfonios
, C. V.
, and Schmelcher
, P.
, “Compact localized states and flat bands from local symmetry partitioning
,” Phys. Rev. B
97
, 035161
(2018
).24.
Salez
, J.
, “Every totally real algebraic integer is a tree eigenvalue
,” J. Comb. Theory, Ser. B
111
, 249
–256
(2015
).25.
Salez
, J.
, “Spectral atoms of unimodular random trees
,” J. Eur. Math. Soc.
22
(2
), 345
–363
(2020
).26.
Toikka
, L. A.
and Andreanov
, A.
, “Necessary and sufficient conditions for flat bands in M-dimensional N-band lattices with complex-valued nearest-neighbour hopping
,” J. Phys. A: Math. Theor.
52
, 02LT04
(2019
).27.
Wilcox
, C. H.
, “Theory of Bloch waves
,” J. Anal. Math.
33
, 146
–167
(1978
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.