We study flat bands of periodic graphs in a Euclidean space. These are infinitely degenerate eigenvalues of the corresponding adjacency matrix, with eigenvectors of compact support. We provide some optimal recipes to generate desired bands and some sufficient conditions for a graph to have flat bands, we characterize the set of flat bands whose eigenvectors occupy a single cell, and we compute the list of such bands for small cells. We next discuss the stability and rarity of flat bands in special cases. Additional folklore results are proved, and many questions are still open.

1.
Anantharaman
,
N.
and
Sabri
,
M.
, “
Recent results of quantum ergodicity on graphs and further investigation
,”
Ann. Fac. Sci. Toulouse: Math.
28
,
559
592
(
2019
).
2.
Aomoto
,
K.
, “
Point spectrum on a quasihomogeneous tree
,”
Pac. J. Math.
147
,
231
242
(
1991
).
3.
Banks
,
J.
,
Garza-Vargas
,
J.
, and
Mukherjee
,
S.
, “
Point spectrum of periodic operators on universal covering trees
,”
Int. Math. Res. Not.
2022
,
17713
17744
.
4.
Boutet de Monvel
,
A.
and
Sabri
,
M.
, “
Ballistic transport in periodic and random media
,” in
From Complex Analysis to Operator Theory: A Panorama. In Memory of Sergey Naboko
, Operator Theory: Advances and Applications series (Springer/ Birkhäuser, 2023), Vol. 291.
5.
Creutz
,
M.
, “
Aspects of chiral symmetry and the lattice
,”
Rev. Mod. Phys.
73
,
119
150
(
2001
).
6.
Damanik
,
D.
,
Embree
,
M.
,
Fillman
,
J.
, and
Mei
,
M.
, “
Discontinuities of the integrated density of states for Laplacians associated with Penrose and Amman-Beenker tilings
,”
Exp. Math.
(unpublished).
7.
Fillman
,
J.
,
Liu
,
W.
, and
Matos
,
R.
, “
Irreducibility of the Bloch variety for finite-range Schrödinger operators
,”
J. Funct. Anal.
283
,
109670
(
2022
).
8.
Fillman
,
J.
,
Liu
,
W.
, and
Matos
,
R.
, “
Algebraic properties of the Fermi variety for periodic graph operators
,” arXiv:2305.06471.
9.
Flach
,
S.
,
Leykam
,
D.
,
Bodyfelt
,
J. D.
,
Matthies
,
P.
, and
Desyatnikov
,
A. S.
, “
Detangling flat bands into Fano lattices
,”
Europhys. Lett.
105
,
30001
(
2014
).
10.
Higuchi
,
Y.
and
Nomura
,
Y.
, “
Spectral structure of the Laplacian on a covering graph
,”
Eur. J. Combinatorics
30
,
570
585
(
2009
).
11.
Kato
,
T.
,
Perturbation Theory for Linear Operators
,
reprint of the 1980 ed.
,
Classics in Mathematics
(
Springer-Verlag
,
Berlin
,
1995
).
12.
Kerner
,
J.
,
Täufer
,
M.
, and
Wintermayr
,
J.
, “
Robustness of flat bands on the perturbed Kagome and the perturbed Super-Kagome lattice
,” arXiv:2301.05076.
13.
Kollár
,
A. J.
,
Fitzpatrick
,
M.
,
Sarnak
,
P.
, and
Houck
,
A. A.
, “
Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics
,”
Commun. Math. Phys.
376
,
1909
1956
(
2020
).
14.
Kollár
,
A. J.
and
Sarnak
,
P.
, “
Gap sets for the spectra of cubic graphs
,”
Commun. Am. Math. Soc.
1
,
1
38
(
2021
).
15.
Korotyaev
,
E.
and
Saburova
,
N.
, “
Schrödinger operators on periodic discrete graphs
,”
J. Math. Anal. Appl.
420
,
576
611
(
2014
).
16.
Korotyaev
,
E.
and
Saburova
,
N.
, “
Spectral estimates for Schrödinger operators on periodic discrete graphs
,”
St. Petersburg Math. J.
30
,
667
698
(
2019
).
17.
Li
,
W.
and
Shipman
,
S. P.
, “
Irreducibility of the Fermi surface for planar periodic graph operators
,”
Lett. Math. Phys.
110
,
2543
2572
(
2020
).
18.
Liu
,
W.
, “
Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues
,”
Geom. Funct. Anal.
32
,
1
30
(
2022
).
19.
McKenzie
,
T.
and
Sabri
,
M.
, “
Quantum ergodicity for periodic graphs
,” Commun. Math. Phys. (to be published); arXiv:2208.12685.
20.
Morfonios
,
C. V.
,
Röntgen
,
M.
,
Pyzh
,
M.
, and
Schmelcher
,
P.
, “
Flat bands by latent symmetry
,”
Phys. Rev. B
104
,
035105
(
2021
).
21.
Peyerimhoff
,
N.
and
Täufer
,
M.
, “
Eigenfunctions and the integrated density of states on Archimedean tilings
,”
J. Spectral Theory
11
,
461
488
(
2021
).
22.
Rhim
,
J.-W.
and
Yang
,
B.-J.
, “
Classification of flat bands according to the band-crossing singularity of Bloch wave functions
,”
Phys. Rev. B
99
,
045107
(
2019
).
23.
Röntgen
,
M.
,
Morfonios
,
C. V.
, and
Schmelcher
,
P.
, “
Compact localized states and flat bands from local symmetry partitioning
,”
Phys. Rev. B
97
,
035161
(
2018
).
24.
Salez
,
J.
, “
Every totally real algebraic integer is a tree eigenvalue
,”
J. Comb. Theory, Ser. B
111
,
249
256
(
2015
).
25.
Salez
,
J.
, “
Spectral atoms of unimodular random trees
,”
J. Eur. Math. Soc.
22
(
2
),
345
363
(
2020
).
26.
Toikka
,
L. A.
and
Andreanov
,
A.
, “
Necessary and sufficient conditions for flat bands in M-dimensional N-band lattices with complex-valued nearest-neighbour hopping
,”
J. Phys. A: Math. Theor.
52
,
02LT04
(
2019
).
27.
Wilcox
,
C. H.
, “
Theory of Bloch waves
,”
J. Anal. Math.
33
,
146
167
(
1978
).
You do not currently have access to this content.