In this Review Article, we review the results of Anderson localization for different random families of operators that enter the framework of random quasi-one-dimensional models. We first recall what is Anderson localization from both physical and mathematical points of view. From the Anderson–Bernoulli conjecture in dimension 2, we justify the introduction of quasi-one-dimensional models. Then, we present different types of these models: the Schrödinger type in the discrete and continuous cases, the unitary type, the Dirac type, and the point interaction type. We present tools coming from the study of dynamical systems in dimension one: the transfer matrix formalism, the Lyapunov exponents, and the Furstenberg group. We then prove a criterion of localization for quasi-one-dimensional models of Schrödinger type involving only geometric and algebraic properties of the Furstenberg group. Then, we review results of localization, first for Schrödinger-type models and then for unitary type models. Each time, we reduce the question of localization to the study of the Furstenberg group and show how to use more and more refined algebraic criteria to prove the needed properties of this group. All the presented results for quasi-one-dimensional models of Schrödinger type include the case of Bernoulli randomness.

1.
Ahlbrecht
,
A.
,
Scholz
,
V. B.
, and
Werner
,
A. H.
, “
Disordered quantum walks in one lattice dimension
,”
J. Math. Phys.
52
,
102201
(
2011
).
2.
Aizenman
,
M.
and
Warzel
,
S.
,
Random Operators: Disorder Effects on Quantum Spectra and Dynamics
[
American Mathematical Society (AMS)
,
Providence, RI
,
2015
], Vol.
168
, pp.
xiv+326
.
3.
Albeverio
,
S.
,
Gesztesy
,
F.
,
Høegh-Krohn
,
R.
, and
Holden
,
H.
,
Solvable Models in Quantum Mechanics. With an Appendix by Pavel Exner
(
AMS Chelsea Publishing
,
Providence, RI
,
2005
), pp.
xiv+488
.
4.
Anderson
,
P.
,
Basic Notions of Condensed Matter Physics
(
CRC Press
,
2018
).
5.
Anderson
,
P. W.
, “
Absence of diffusion in certain random lattices
,”
Phys. Rev.
109
,
1492
1505
(
1958
).
6.
Arnold
,
L.
,
Random Dynamical Systems
(
Springer
,
Berlin
,
1998
), pp.
xi+586
.
7.
Asch
,
J.
,
Bourget
,
O.
, and
Joye
,
A.
, “
Localization properties of the Chalker–Coddington model
,”
Ann. Henri Poincaré
11
,
1341
1373
(
2010
).
8.
Asch
,
J.
,
Bourget
,
O.
, and
Joye
,
A.
, “
Dynamical localization of the Chalker-Coddington model far from transition
,”
J. Stat. Phys.
147
,
194
205
(
2012
).
9.
Basko
,
D. M.
,
Aleiner
,
I. L.
, and
Altshuler
,
B. L.
, “
Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states
,”
Ann. Phys.
321
,
1126
1205
(
2006
).
10.
Berezin
,
F. A.
and
Faddeev
,
L. D.
, “
A remark on Schrödinger’s equation with a singular potential
,”
Sov. Math., Dokl.
2
,
372
375
(
1961
).
11.
Bougerol
,
P.
and
Lacroix
,
J.
,
Products of Random Matrices with Applications to Schrödinger Operators
(
Birkhäuser
,
Boston, MA
,
1985
), Vol.
8
.
12.
Boumaza
,
H.
, “
Positivity of Lyapunov exponents for a continuous matrix-valued Anderson model
,”
Math. Phys., Anal. Geom.
10
,
97
122
(
2007
).
13.
Boumaza
,
H.
, “
Hölder continuity of the integrated density of states for matrix-valued Anderson models
,”
Rev. Math. Phys.
20
,
873
900
(
2008
).
14.
Boumaza
,
H.
, “
A matrix-valued point interactions model
,”
Lett. Math. Phys.
87
,
81
97
(
2009
).
15.
Boumaza
,
H.
, “
Localization for a matrix-valued Anderson model
,”
Math. Phys., Anal. Geom.
12
,
255
286
(
2009
).
16.
Boumaza
,
H.
, “
Localization for an Anderson-Bernoulli model with generic interaction potential
,”
Tohoku Math. J.
65
,
57
74
(
2013
).
17.
Boumaza
,
H.
and
Marin
,
L.
, “
Absence of absolutely continuous spectrum for random scattering zippers
,”
J. Math. Phys.
56
,
022701
(
2015
).
18.
Boumaza
,
H.
and
Najar
,
H.
, “
Lifshitz tails for continuous matrix-valued Anderson models
,”
J. Stat. Phys.
160
,
371
396
(
2015
).
19.
Boumaza
,
H.
and
Stolz
,
G.
, “
Positivity of Lyapunov exponents for Anderson-type models on two coupled strings
,”
Electron. J. Differ. Equations
18
,
47
(
2007
).
20.
Bourgain
,
J.
and
Kenig
,
C. E.
, “
On localization in the continuous Anderson-Bernoulli model in higher dimension
,”
Invent. Math.
161
,
389
426
(
2005
).
21.
Anderson Localization and Its Ramification. Disorder, Phase Coherence, and Electron Correlations
,
Lecture Notes in Physics Vol. 630
, edited by
Brandes
,
T.
and
Kettemann
,
S.
(
Springer
,
Berlin
,
2003
).
22.
Breuillard
,
E.
, Cours Peccot 2006: Propriétés qualitatives des groupes discrets,
2006
.
23.
Breuillard
,
E.
and
Gelander
,
T.
, “
On dense free subgroups of Lie groups
,”
J. Algebra
261
,
448
467
(
2003
).
24.
Bucaj
,
V.
,
Damanik
,
D.
,
Fillman
,
J.
,
Gerbuz
,
V.
,
Vandenboom
,
T.
,
Wang
,
F.
, and
Zhang
,
Z.
, “
Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent
,”
Trans. Am. Math. Soc.
372
,
3619
3667
(
2019
).
25.
Bucaj
,
V.
,
Damanik
,
D.
,
Fillman
,
J.
,
Gerbuz
,
V.
,
VandenBoom
,
T.
,
Wang
,
F.
, and
Zhang
,
Z.
, “
Positive Lyapunov exponents and a large deviation theorem for continuum Anderson models, briefly
,”
J. Funct. Anal.
277
,
3179
3186
(
2019
).
26.
Cantero
,
M. J.
,
Grünbaum
,
F. A.
,
Moral
,
L.
, and
Velázquez
,
L.
, “
One-dimensional quantum walks with one defect
,”
Rev. Math. Phys.
24
,
1250002
(
2012
).
27.
Cantero
,
M. J.
,
Moral
,
L.
,
Grünbaum
,
F. A.
, and
Velázquez
,
L.
, “
Matrix-valued Szegő polynomials and quantum random walks
,”
Commun. Pure Appl. Math.
63
,
464
507
(
2010
).
28.
Cantero
,
M. J.
,
Moral
,
L.
, and
Velázquez
,
L.
, “
Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle
,”
Linear Algebra Appl.
362
,
29
56
(
2003
).
29.
Carmona
,
R.
,
Klein
,
A.
, and
Martinelli
,
F.
, “
Anderson localization for Bernoulli and other singular potentials
,”
Commun. Math. Phys.
108
,
41
66
(
1987
).
30.
Carmona
,
R.
and
Lacroix
,
J.
,
Spectral Theory of Random Schrödinger Operators
(
Birkhäuser Verlag
,
Basel
,
1990
), pp.
xxvi+587
.
31.
Chapman
,
J.
and
Stolz
,
G.
, “
Localization for random block operators related to the XY spin chain
,”
Ann. Henri Poincaré
16
,
405
435
(
2015
).
32.
Damanik
,
D.
,
Fillman
,
J.
,
Helman
,
M.
,
Kesten
,
J.
, and
Sukhtaiev
,
S.
, “
Random Hamiltonians with arbitrary point interactions in one dimension
,”
J. Differ. Equations
282
,
104
126
(
2021
).
33.
Damanik
,
D.
,
Fillman
,
J.
, and
Sukhtaiev
,
S.
, “
Localization for Anderson models on metric and discrete tree graphs
,”
Math. Ann.
376
,
1337
1393
(
2020
).
34.
Damanik
,
D.
,
Sims
,
R.
, and
Stolz
,
G.
, “
Localization for one-dimensional, continuum, Bernoulli-Anderson models
,”
Duke Math. J.
114
,
59
100
(
2002
).
35.
Damanik
,
D.
and
Stollmann
,
P.
, “
Multi-scale analysis implies strong dynamical localization
,”
Geom. Funct. Anal.
11
,
11
29
(
2001
).
36.
Delyon
,
F.
,
Simon
,
B.
, and
Souillard
,
B.
, “
From power pure point to continuous spectrum in disordered systems
,”
Ann. I.H.P.: Phys. Theor.
42
,
283
309
(
1985
).
37.
Ding
,
J.
and
Smart
,
C. K.
, “
Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice
,”
Invent. Math.
219
,
467
506
(
2020
).
38.
Disertori
,
M.
,
Kirsch
,
W.
,
Klein
,
A.
,
Klopp
,
F.
, and
Rivasseau
,
V.
,
Random Schrödinger Operators
[
Société Mathématique de France (SMF)
,
Paris
,
2008
], Vol.
25
, pp.
xiv+213
.
39.
Duarte
,
P.
and
Klein
,
S.
, “
Large deviations for products of random two dimensional matrices
,”
Commun. Math. Phys.
375
,
2191
2257
(
2020
).
40.
Furstenberg
,
H.
, “
Noncommuting random products
,”
Trans. Am. Math. Soc.
108
,
377
428
(
1963
).
41.
Furstenberg
,
H.
and
Kesten
,
H.
, “
Products of random matrices
,”
Ann. Math. Stat.
31
,
457
469
(
1960
).
42.
Ge
,
L.
and
Zhao
,
X.
, “
Exponential dynamical localization in expectation for the one dimensional Anderson model
,”
J. Spectral Theory
10
,
887
904
(
2020
).
43.
Genovese
,
G.
,
Giacomin
,
G.
, and
Greenblatt
,
R. L.
, “
Singular behavior of the leading Lyapunov exponent of a product of random 2 × 2 matrices
,”
Commun. Math. Phys.
351
,
923
958
(
2017
).
44.
Germinet
,
F.
and
Klein
,
A.
, “
Bootstrap multiscale analysis and localization in random media
,”
Commun. Math. Phys.
222
,
415
448
(
2001
).
45.
Germinet
,
F.
,
Klein
,
A.
, and
Schenker
,
J. H.
, “
Dynamical delocalization in random Landau Hamiltonians
,”
Ann. Math.
166
(
1
),
215
244
(
2007
).
46.
Girvin
,
S.
and
Yang
,
K.
,
Modern Condensed Matter Physics
(
Cambridge University Press
,
2019
).
47.
Glaffig
,
C.
, “
Smoothness of the integrated density of states on strips
,”
J. Funct. Anal.
92
,
509
534
(
1990
).
48.
Goldsheid
,
I. Y.
, “
Zariski closure of subgroups of the symplectic group and Lyapunov exponents of the Schrödinger operator on the strip
,”
Commun. Math. Phys.
174
,
347
365
(
1995
).
49.
Goldsheid
,
I. Y.
and
Margulis
,
G. A.
, “
Lyapunov indices of a product of random matrices
,”
Russ. Math. Surv.
44
,
11
71
(
1989
).
50.
Gorodetski
,
A.
and
Kleptsyn
,
V.
, “
Parametric Furstenberg theorem on random products of SL(2,R) matrices
,”
Adv. Math.
378
,
107522
(
2021
).
51.
Guivarc’h
,
Y.
and
Raugi
,
A.
, “
Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
69
,
187
242
(
1985
).
52.
Hamza
,
E.
,
Joye
,
A.
, and
Stolz
,
G.
, “
Dynamical localization for unitary Anderson models
,”
Math. Phys., Anal. Geom.
12
,
381
444
(
2009
).
53.
Hamza
,
E.
and
Stolz
,
G.
, “
Lyapunov exponents for unitary Anderson models
,”
J. Math. Phys.
48
,
043301
(
2007
).
54.
Hislop
,
P. D.
,
Fourth Summer School in Analysis and Mathematical Physics: Topics in Spectral Theory and Quantum Mechanics, Cuernavaca, México, May 2005
,
Lectures on Random Schrödinger Operators
[
American Mathematical Society (AMS)
,
Providence, RI
,
2008
], pp.
41
131
.
55.
Hislop
,
P. D.
,
Kirsch
,
W.
, and
Krishna
,
M.
, “
Spectral and dynamical properties of random models with nonlocal and singular interactions
,”
Math. Nachr.
278
,
627
664
(
2005
).
56.
Hislop
,
P. D.
,
Kirsch
,
W.
, and
Krishna
,
M.
, “
Eigenvalue statistics for Schrödinger operators with random point interactions on Rd,d=1,2,3
,”
J. Math. Phys.
61
,
092103
(
2020
).
57.
Hurt
,
N. E.
,
Mathematical Physics of Quantum Wires and Devices: From Spectral Resonances to Anderson Localization
,
Mathematics and its Applications Vol. 506
(
Kluwer Academic Publishers
,
Dordrecht
,
2000
).
58.
Jitomirskaya
,
S.
and
Zhu
,
X.
, “
Large deviations of the Lyapunov exponent and localization for the 1D Anderson model
,”
Commun. Math. Phys.
370
,
311
324
(
2019
).
59.
Kingman
,
J. F. C.
, “
Subadditive ergodic theory
,”
Ann. Probab.
1
,
883
909
(
1973
).
60.
Kirsch
,
W.
and
Martinelli
,
F.
, “
On the ergodic properties of the spectrum of general random operators
,”
J. Reine Angew. Math.
334
,
141
156
(
1982
).
61.
Klein
,
A.
, “
Multiscale analysis and localization of random operators
,” in
Random Schrödinger Operators
[
Société Mathématique de France (SMF)
,
Paris
,
2008
], pp.
221
259
.
62.
Klein
,
A.
,
Lacroix
,
J.
, and
Speis
,
A.
, “
Localization for the Anderson model on a strip with singular potentials
,”
J. Funct. Anal.
94
,
135
155
(
1990
).
63.
Kotani
,
S.
, “
Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators
,” in
Stochastic Analysis: Proceedings of the Taniguchi International Symposium on Stochastic Analysis, Katata and Kyoto, 1982
,
North-Holland Mathematical Library Vol. 32
(
Elsevier
,
1984
), pp.
225
247
.
64.
Kotani
,
S.
and
Simon
,
B.
, “
Stochastic Schrödinger operators and Jacobi matrices on the strip
,”
Commun. Math. Phys.
119
,
403
429
(
1988
).
65.
Kunz
,
H.
and
Souillard
,
B.
, “
Sur le spectre des opérateurs aux différences finies aléatoires
,”
Commun. Math. Phys.
78
,
201
246
(
1980
).
66.
Li
,
L.
and
Zhang
,
L.
, “
Anderson–Bernoulli localization on the three-dimensional lattice and discrete unique continuation principle
,”
Duke Math. J.
171
,
327
415
(
2022
).
67.
Macera
,
D.
and
Sodin
,
S.
, “
Anderson localisation for quasi-one-dimensional random operators
,”
Ann. Henri Poincaré
23
,
4227
4247
(
2022
).
68.
Marin
,
L.
and
Schulz-Baldes
,
H.
, “
Scattering zippers and their spectral theory
,”
J. Spectral Theory
3
,
47
82
(
2013
).
69.
Oseledets
,
V. I.
, “
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
,”
Trans. Moscow Math. Soc.
19
,
197
231
(
1968
).
70.
Pastur
,
L. A.
, “
Spectral properties of disordered systems in the one-body approximation
,”
Commun. Math. Phys.
75
,
179
196
(
1980
).
71.
Rangamani
,
N.
, “
Singular-unbounded random Jacobi matrices
,”
J. Math. Phys.
60
,
081904
(
2019
).
72.
Rangamani
,
N.
, “
Exponential dynamical localization for random word models
,”
Ann. Henri Poincaré
23
,
4171
4193
(
2022
).
73.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics. IV: Analysis of Operators
(
Academic Press
,
New York; San Francisco; London
,
1978
), Vol.
15
, p.
396
.
74.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics. III: Scattering Theory
(
Academic Press
,
New York; San Francisco; London
,
1979
), Vol.
15
, p.
463
.
75.
Ruelle
,
D.
, “
Ergodic theory of differentiable dynamical systems
,”
Publ. Math. l’IHÉS
50
,
27
58
(
1979
).
76.
Sadel
,
C.
and
Schulz-Baldes
,
H.
, “
Random Dirac operators with time reversal symmetry
,”
Commun. Math. Phys.
295
,
209
242
(
2010
).
77.
Shubin
,
C.
,
Vakilian
,
R.
, and
Wolff
,
T.
, “
Some harmonic analysis questions suggested by Anderson-Bernoulli models
,”
Geom. Funct. Anal.
8
,
932
964
(
1998
), Appendix by T. H. Wolff.
78.
Simon
,
B.
,
Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory
,
Colloquium Publications Vol. 54
[
American Mathematical Society (AMS)
,
Providence, RI
,
2005
].
79.
Simon
,
B.
,
Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory
,
Colloquium Publications Vol. 54
(
American Mathematical Society
,
Providence, RI
,
2005
).
80.
Stollmann
,
P.
,
Caught by Disorder
,
Bound States in Random Media Vol. 20
(
Birkhäuser
,
Boston
,
2001
), p.
xvi+166
.
81.
Veselić
,
I.
,
Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators
,
Lecture Notes in Mathematics Vol. 1917
(
Springer
,
Berlin
,
2008
).
82.
Werner
,
A. H.
, “
Localization and recurrence in quantum walks
,” Ph.D. thesis,
Gottfried Wilhelm Leibniz Universität Hannover
,
2013
.
83.
Zalczer
,
S.
, “
Localization for one-dimensional Anderson–Dirac models
,”
Ann. Henri Poincaré
24
,
37
72
(
2023
).
84.
Zhu
,
X.
, “
Localization for random CMV matrices
,” arXiv:2110.11386 (
2021
).
You do not currently have access to this content.