Light propagation through diffusive media can be described by the diffusion equation in a space–time domain. Furthermore, fluorescence can be described by a system of coupled diffusion equations. This paper analyzes time-domain measurements. In particular, the temporal point-spread function is measured at the boundary of a diffusive medium. Moreover, the temporal profile of fluorescence is considered. In both cases, we refer to the maximum temporal position of measured light as the peak time. In this paper, we provide proofs of the existence and uniqueness of the peak time and give explicit expressions of the peak time. The relationship between the peak time and the object position in a medium is clarified.

1.
F.
Marttelli
,
S. D.
Bianco
,
A.
Ismaelli
, and
G.
Zaccanti
,
(SPIE, Beliingham, WA, 2010)
.
2.
H. B.
Jiang
,
Diffuse Optical Tomography: Principles and Applications
(
CRC Press; Taylor and Francis Group
,
Boca Raton
,
2011
).
3.
T.
Durduran
,
R.
Choe
,
W. B.
Baker
, and
A. G.
Yodh
, “
Diffuse optics for tissue monitoring and tomography
,”
Rep. Prog. Phys.
73
(
7
),
076701
(
2010
).
4.
M.
Mycek
and
B. W.
Pogue
,
Handbook of Biomedical Fluorescence
(
Marcel Dekker
,
New York
,
2003
).
5.
M.
Rudin
,
Molecular Imaging: Basic Principles and Applications in Biomedical Research
,
2nd ed.
(
Imperial College Press
,
London
,
2013
).
6.
V.
Ntziachristos
,
C.
Tung
,
C.
Bremer
, and
R.
Weissleder
, “
Fluorescence molecular tomography resolves protease activity in vivo
,”
Nat. Med.
8
(
7
),
757
761
(
2002
).
7.
S. R.
Arridge
, “
Optical tomography in medical imaging
,”
Inverse Probl.
15
(
2
),
R41
R93
(
1999
).
8.
S. R.
Arridge
and
J. C.
Schotland
, “
Optical tomography: Forward and inverse problems
,”
Inverse Probl.
25
(
12
),
123010
(
2009
).
9.
S.
Lam
,
F.
Lesage
, and
X.
Intes
, “
Time domain fluorescent diffuse optical tomography: Analytical expressions
,”
Opt. Express
13
(
7
),
2263
2275
(
2005
).
10.
S. H.
Han
,
S.
Farshchi-Heydari
, and
D. J.
Hall
, “
Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging
,”
J. Biomed. Opt.
13
(
6
),
064038
(
2008
).
11.
F.
Gao
,
H.
Zhao
,
L.
Zhang
,
Y.
Tanikawa
,
A.
Marjono
, and
Y.
Yamada
, “
A self-normalized, full time-resolved method for fluorescence diffuse optical tomography
,”
Opt. Express
16
(
17
),
13104
13121
(
2008
).
12.
S. V.
Patwardhan
,
S. R.
Bloch
,
S.
Achilefu
, and
J. P.
Culver
, “
Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice
,”
Opt. Express
13
(
7
),
2564
2577
(
2005
).
13.
N.
Ducros
,
C.
D’Andrea
,
A.
Bassi
, and
F.
Peyrin
, “
Fluorescence diffuse optical tomography: Time-resolved versus continuous-wave in the reflectance configuration
,”
IRBM
32
(
4
),
243
250
(
2011
).
14.
V.
Nitziachristos
and
R.
Weissleder
, “
Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation
,”
Opt. Lett.
26
(
12
),
893
895
(
2001
).
15.
A.
Corlu
,
R.
Choe
,
T.
Durduran
,
M. A.
Rosen
,
M.
Schweiger
,
S. R.
Arridge
,
M. D.
Schnall
, and
A. G.
Yodh
, “
Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans
,”
Opt. Express
15
(
11
),
6696
6716
(
2007
).
16.
A. B.
Milstein
,
J. J.
Stott
,
S.
Oh
,
D. A.
Boas
,
R. P.
Millane
,
C. A.
Bouman
, and
K. J.
Webb
, “
Fluorescence optical diffusion tomography using multiple-frequency data
,”
J. Opt. Soc. Am. A
21
(
6
),
1035
1049
(
2004
).
17.
J.
Riley
,
M.
Hassan
,
V.
Chernomordik
, and
A.
Gandjbakhche
, “
Choice of data types in time resolved fluorescence enhanced diffuse optical tomography: Data-type choice for fluorescence optical tomography
,”
Med. Phys.
34
(
12
),
4890
4900
(
2007
).
18.
D.
Hall
,
G. B.
Ma
,
F.
Lesage
, and
Y.
Wang
, “
Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium
,”
Opt. Lett.
29
(
19
),
2258
2260
(
2004
).
19.
G.
Nishimura
and
M.
Tamura
, “
Simple peak shift analysis of time-of-flight data with a slow instrumental response function
,”
J. Biomed. Opt.
10
(
1
),
014016
(
2005
).
20.
B.
Siudeja
, “
Hot spots conjecture for a class of acute triangles
,”
Math. Z.
280
,
783
806
(
2015
).
21.
R.
Banuelos
and
K.
Burdzy
, “
On the “hot spots” conjecture of J. Rauch
,”
J. Funct. Anal.
164
,
1
33
(
1999
).
22.
K.
Burdzy
and
W.
Werner
, “
A counterexample to the “hot spots” conjecture
,”
Ann. Math.
149
(
1
),
309
317
(
1999
).
23.
A.
Likar
and
T.
Vidmar
, “
A peak-search method based on spectrum convolution
,”
J. Phys. D: Appl. Phys.
36
,
1903
1909
(
2003
).
24.
M. J.
Shensa
, “
The discrete wavelet transform: Wedding the a trous and Mallat algorithms
,”
IEEE Trans. Signal Process.
40
(
10
),
2464
2482
(
1992
).
25.
P.
Du
,
W. A.
Kibbe
, and
S. M.
Lin
, “
Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
,”
Bioinformatics
22
(
17
),
2059
2065
(
2006
).
26.
R. C.
Haskell
,
L. O.
Svaasand
,
T. T.
Tsay
,
T. C.
Feng
et al, “
Boundary conditions for the diffusion equation in radiative transfer
,”
J. Opt. Soc. Am. A
11
,
2727
2741
(
1994
).
27.
M.
Machida
and
G.
Nakamura
, “
Born series for the photon diffusion equation perturbing the Robin boundary condition
,”
J. Math. Phys.
61
,
013502
(
2020
).
You do not currently have access to this content.