Light propagation through diffusive media can be described by the diffusion equation in a space–time domain. Furthermore, fluorescence can be described by a system of coupled diffusion equations. This paper analyzes time-domain measurements. In particular, the temporal point-spread function is measured at the boundary of a diffusive medium. Moreover, the temporal profile of fluorescence is considered. In both cases, we refer to the maximum temporal position of measured light as the peak time. In this paper, we provide proofs of the existence and uniqueness of the peak time and give explicit expressions of the peak time. The relationship between the peak time and the object position in a medium is clarified.
REFERENCES
1.
F.
Marttelli
, S. D.
Bianco
, A.
Ismaelli
, and G.
Zaccanti
, (SPIE, Beliingham, WA, 2010)
.2.
H. B.
Jiang
, Diffuse Optical Tomography: Principles and Applications
(CRC Press; Taylor and Francis Group
, Boca Raton
, 2011
).3.
T.
Durduran
, R.
Choe
, W. B.
Baker
, and A. G.
Yodh
, “Diffuse optics for tissue monitoring and tomography
,” Rep. Prog. Phys.
73
(7
), 076701
(2010
).4.
M.
Mycek
and B. W.
Pogue
, Handbook of Biomedical Fluorescence
(Marcel Dekker
, New York
, 2003
).5.
M.
Rudin
, Molecular Imaging: Basic Principles and Applications in Biomedical Research
, 2nd ed.
(Imperial College Press
, London
, 2013
).6.
V.
Ntziachristos
, C.
Tung
, C.
Bremer
, and R.
Weissleder
, “Fluorescence molecular tomography resolves protease activity in vivo
,” Nat. Med.
8
(7
), 757
–761
(2002
).7.
S. R.
Arridge
, “Optical tomography in medical imaging
,” Inverse Probl.
15
(2
), R41
–R93
(1999
).8.
S. R.
Arridge
and J. C.
Schotland
, “Optical tomography: Forward and inverse problems
,” Inverse Probl.
25
(12
), 123010
(2009
).9.
S.
Lam
, F.
Lesage
, and X.
Intes
, “Time domain fluorescent diffuse optical tomography: Analytical expressions
,” Opt. Express
13
(7
), 2263
–2275
(2005
).10.
S. H.
Han
, S.
Farshchi-Heydari
, and D. J.
Hall
, “Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging
,” J. Biomed. Opt.
13
(6
), 064038
(2008
).11.
F.
Gao
, H.
Zhao
, L.
Zhang
, Y.
Tanikawa
, A.
Marjono
, and Y.
Yamada
, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography
,” Opt. Express
16
(17
), 13104
–13121
(2008
).12.
S. V.
Patwardhan
, S. R.
Bloch
, S.
Achilefu
, and J. P.
Culver
, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice
,” Opt. Express
13
(7
), 2564
–2577
(2005
).13.
N.
Ducros
, C.
D’Andrea
, A.
Bassi
, and F.
Peyrin
, “Fluorescence diffuse optical tomography: Time-resolved versus continuous-wave in the reflectance configuration
,” IRBM
32
(4
), 243
–250
(2011
).14.
V.
Nitziachristos
and R.
Weissleder
, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation
,” Opt. Lett.
26
(12
), 893
–895
(2001
).15.
A.
Corlu
, R.
Choe
, T.
Durduran
, M. A.
Rosen
, M.
Schweiger
, S. R.
Arridge
, M. D.
Schnall
, and A. G.
Yodh
, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans
,” Opt. Express
15
(11
), 6696
–6716
(2007
).16.
A. B.
Milstein
, J. J.
Stott
, S.
Oh
, D. A.
Boas
, R. P.
Millane
, C. A.
Bouman
, and K. J.
Webb
, “Fluorescence optical diffusion tomography using multiple-frequency data
,” J. Opt. Soc. Am. A
21
(6
), 1035
–1049
(2004
).17.
J.
Riley
, M.
Hassan
, V.
Chernomordik
, and A.
Gandjbakhche
, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography: Data-type choice for fluorescence optical tomography
,” Med. Phys.
34
(12
), 4890
–4900
(2007
).18.
D.
Hall
, G. B.
Ma
, F.
Lesage
, and Y.
Wang
, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium
,” Opt. Lett.
29
(19
), 2258
–2260
(2004
).19.
G.
Nishimura
and M.
Tamura
, “Simple peak shift analysis of time-of-flight data with a slow instrumental response function
,” J. Biomed. Opt.
10
(1
), 014016
(2005
).20.
B.
Siudeja
, “Hot spots conjecture for a class of acute triangles
,” Math. Z.
280
, 783
–806
(2015
).21.
R.
Banuelos
and K.
Burdzy
, “On the “hot spots” conjecture of J. Rauch
,” J. Funct. Anal.
164
, 1
–33
(1999
).22.
K.
Burdzy
and W.
Werner
, “A counterexample to the “hot spots” conjecture
,” Ann. Math.
149
(1
), 309
–317
(1999
).23.
A.
Likar
and T.
Vidmar
, “A peak-search method based on spectrum convolution
,” J. Phys. D: Appl. Phys.
36
, 1903
–1909
(2003
).24.
M. J.
Shensa
, “The discrete wavelet transform: Wedding the a trous and Mallat algorithms
,” IEEE Trans. Signal Process.
40
(10
), 2464
–2482
(1992
).25.
P.
Du
, W. A.
Kibbe
, and S. M.
Lin
, “Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
,” Bioinformatics
22
(17
), 2059
–2065
(2006
).26.
R. C.
Haskell
, L. O.
Svaasand
, T. T.
Tsay
, T. C.
Feng
et al, “Boundary conditions for the diffusion equation in radiative transfer
,” J. Opt. Soc. Am. A
11
, 2727
–2741
(1994
).27.
M.
Machida
and G.
Nakamura
, “Born series for the photon diffusion equation perturbing the Robin boundary condition
,” J. Math. Phys.
61
, 013502
(2020
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.