The Hamiltonian approach to isomonodromic deformation systems is extended to include generic rational covariant derivative operators on the Riemann sphere with irregular singularities of arbitrary Poincaré rank. The space of rational connections with given pole degrees carries a natural Poisson structure corresponding to the standard classical rational R-matrix structure on the dual space L*gl(r) of the loop algebra Lgl(r). Nonautonomous isomonodromic counterparts of isospectral systems generated by spectral invariants are obtained by identifying deformation parameters as Casimir elements on the phase space. These are shown to coincide with higher Birkhoff invariants determining local asymptotics near to irregular singular points, together with the pole loci. Pairs consisting of Birkhoff invariants, together with the corresponding dual spectral invariant Hamiltonians, appear as “mirror images” matching, at each pole, the negative power coefficients in the principal part of the Laurent expansion of the fundamental meromorphic differential on the associated spectral curve with the corresponding positive power terms in the analytic part. Infinitesimal isomonodromic deformations are shown to be generated by the sum of the Hamiltonian vector field and an explicit derivative vector field that is transversal to the symplectic foliation. The Casimir elements serve as coordinates complementing those along the symplectic leaves, defining a local symplectomorphism between them. The explicit derivative vector fields preserve the Poisson structure and define a flat transversal connection, spanning an integrable distribution whose leaves may be identified as the orbits of a free Abelian local group action. The projection of infinitesimal isomonodromic deformation vector fields to the quotient manifold under this action gives commuting Hamiltonian vector fields corresponding to the spectral invariants dual to the Birkhoff invariants and the pole loci.

1.
Adams
,
M. R.
,
Harnad
,
J.
, and
Hurtubise
,
J.
, “
Dual moment maps into loop algebras
,”
Lett. Math. Phys.
20
,
299
308
(
1990
).
2.
Adams
,
M. R.
,
Harnad
,
J.
, and
Hurtubise
,
J.
, “
Darboux coordinates and Liouville-Arnold integration in loop algebras
,”
Commun. Math. Phys.
155
,
385
413
(
1993
).
3.
Adler
,
M.
and
van Moerbeke
,
P.
, “
Completely integrable systems, Euclidean Lie algebras, and curves
,”
Adv. Math.
38
,
267
317
(
1980
);
Linearization of Hamiltonian systems, Jacobi varieties and representation theory
,”
38
, 318379 (
1980
).
4.
Balser
,
W.
,
Jurkatz
,
W. B.
, and
Lutz
,
D. A.
, “
Birkhoff invariants and stokes’ multipliers for meromorphic linear differential equations
,”
J. Math. Anal. Appl.
71
,
48
94
(
1979
).
5.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Partition functions for matrix models and isomonodromic tau functions
,”
J. Phys. A: Math. Gen.
36
,
3067
3983
(
2003
).
6.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Differential systems for biorthogonal polynomials appearing in 2-matrix models, and the associated Riemann–Hilbert problem
,”
Commun. Math. Phys.
243
,
193
240
(
2003
).
7.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions
,”
Commun. Math. Phys.
263
,
401
437
(
2006
).
8.
Bertola
,
M.
and
Mo
,
M. Y.
, “
Isomonodromic deformation of resonant rational connections
,”
Int. Math. Res. Pap.
2005
(
11
),
565
635
.
9.
Birkhoff
,
G. D.
, “
The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations
,”
Proc. Am. Acad. Arts Sci.
49
(
9
),
521
568
(
1913
).
10.
Boalch
,
P.
, “
Symplectic manifolds and isomonodromic deformations
,”
Adv. Math.
163
,
137
205
(
2001
).
11.
Boalch
,
P.
, “
Quasi-Hamiltonian geometry of meromorphic connections
,”
Duke Math. J.
139
,
369
405
(
2007
).
12.
Boalch
,
P.
, “
Simply-laced isomonodromy systems
,”
Publ. Math. IHÉS
116
,
1
68
(
2012
).
13.
Conte
,
R.
and
Musette
,
M.
,
The Painlevé Handbook
,
Springer Mathematical Physics Studies
,
2nd ed.
(
Springer
,
2020
).
14.
Flaschka
,
H.
and
Newell
,
A. C.
, “
Monodromy- and spectrum-preserving deformations I
,”
Commun. Math. Phys.
76
,
65
116
(
1980
).
15.
Flaschka
,
H.
and
Newell
,
A. C.
, “
The inverse monodromy transform is a canonical transformation
,”
North Holland Math. Stud.
61
,
65
89
(
1982
).
16.
Fuchs
,
R.
, “
Sur quelques équations différentielles linéaires du seconde ordre
,”
C. R. Acad. Sci. Paris.
141
,
555
558
(
1905
).
17.
Fuchs
,
R.
, “
Uber lineare homogene differentialgleichungen zweiter ordnung mit drei im endlichen gelegene wesentlich singulëre stellen
,”
Math. Ann.
63
,
301
321
(
1907
).
18.
Gaiur
,
I.
,
Mazzocco
,
M.
, and
Rubtsov
,
V.
, “
Isomonodromic deformations: Confluence, reduction and quantisation
,”
Commun. Math. Phys.
400
,
1385
1461
(
2023
).
19.
Gambier
,
N.
, “
Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est á points critiques fixes
,”
Acta Math.
,
33
,
1
55
(
1910
).
20.
Garnier
,
R.
, “
Sur les équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
,”
Ann. Sci. Ec. Norm. Super.
29
,
1
126
(
1912
).
21.
Garnier
,
R.
, “
Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires
,”
Rend. Circolo Mat. Palermo
43
,
155
191
(
1919
).
22.
Garnier
,
R.
, “
Solution du probléme de Riemann pour les systémes différentielles linéaires du second ordre
,”
Ann. Sci. Ec. Norm. Super.
43
,
177
307
(
1926
).
23.
Gaudin
,
M.
, “
Diagonalization d’une classe d’hamiltoniens de spin
,”
J. Phys.
37
,
1087
1098
(
1976
).
24.
Gavrylenko
,
P.
and
Lisovyy
,
O.
, “
Fredholm determinant and nekrasov sum representations of isomonodromic tau functions
,”
Commun. Math. Phys.
363
,
1
58
(
2018
).
25.
Guzzetti
,
D.
, “
The logarithmic asymptotics of the sixth Painleve’ equation
,”
J. Phys. A: Math. Theor.
41
,
205201
205247
(
2008
).
26.
Guzzetti
,
D.
, “
A review on the sixth Painleve’ equation
,”
Constr. Approximation
41
,
495
527
(
2015
).
27.
Harnad
,
J.
, “
Isospectral flow and Liouville–Arnold integration in loop algebras
,” in
Geometric and Quantum Methods in Integrable Systems
,
Springer Lecture Notes in Physics Vol. 424
, edited by
G.
Helminck
(
Springer-Verlag
,
Heidelberg
,
1993
).
28.
Harnad
,
J.
, “
Dual isomonodromic deformations and moment maps into loop algebras
,”
Commun. Math. Phys.
166
,
337
365
(
1994
).
29.
Harnad
,
J.
, “
On the bilinear equations for Fredholm determinants appearing in random matrices
,”
J. Nonlinear Math. Phys.
9
(
4
),
530
550
(
2002
).
30.
Harnad
,
J.
, “
Hamiltonian theory of the general rational isomonodromic deformation problem
,” in
Presentation at Fields Institute workshop on integrable and near-integrable Hamiltonian systems
,
17–21 May 2004
; available at http://www.fields.utoronto.ca/audio/03-04/integrable/harnad/.
31.
Random Matrices, Random Processes and Integrable Systems
,
CRM Series in Mathematical Physics
, edited by
J.
Harnad
(
Springer Verlag
,
New York
,
2011
).
32.
Harnad
,
J.
and
Balogh
,
F.
,
Tau Functions and Their Applications
,
Monographs on Mathematical Physics
(
Cambridge University Press
,
2021
).
33.
Isomonodromic Deformations and Applications in Physics
,
CRM Proceedings and Lecture Notes Vol. 31
, edited by
J.
Harnad
and
A.
Its
(
AMS
,
Providence, RI
,
2002
).
34.
Harnad
,
J.
and
Routhier
,
M.
, “
R-matrix construction of electromagnetic models for the Painlevé transcendents
,”
J. Math. Phys.
36
,
4863
4881
(
1995
).
35.
Harnad
,
J.
,
Tracy
,
C. A.
, and
Widom
,
H.
, “
Hamiltonian structure of equations appearing in random matrices
,” in
Low Dimensional Topology and Quantum Field Theory
, edited by
H.
Osborn
(
Plenum
,
New York
,
1993
), pp.
231
245
.
36.
Hirota
,
R.
,
The Direct Method in Soliton Theory
,
Cambridge Tracts in Mathematics Vol. 155
(
Cambridge University Press
,
Cambridge, UK
,
2009
).
37.
Hitchin
,
N. J.
, “
Geometrical aspects of Schlesinger’s equation
,”
J. Geom. Phys.
23
(
3–4
),
287
300
(
1997
).
38.
Hurtubise
,
J.
, “
The geometry of isomonodromic deformations
,”
J. Geom. Phys.
58
,
1394
1406
(
2008
).
39.
Its
,
A. R.
,
Fokas
,
A. S.
, and
Kapaev
,
A. A.
, “
On the asymptotic analysis of the Painlevé equations via the isomonodromy method
,”
Nonlinearity
7
,
1291
1325
(
1994
).
40.
Its
,
A.
,
Lisovyy
,
O.
, and
Prokhorov
,
A.
, “
Monodromy dependence and connection formulae for isomonodromic tau functions
,”
Duke Math. J.
167
(
7
),
1347
1432
(
2018
).
41.
Its
,
A.
and
Novokshenov
,
V. Y.
,
The Isomonodromic Deformation Method in the Theory of Painlevé Equations
,
Springer Lecture Notes in Mathematics Vol. 1191
(
Berlin, NY
,
1986
).
42.
Its
,
A. R.
and
Prokhorov
,
A.
, “
On some Hamiltonian properties of the isomonodromic tau functions
,”
Rev. Math. Phys.
30
(
07
),
1840008
(
2018
).
43.
Iorgov
,
N.
,
Lisovyy
,
O.
, and
Teschner
,
J.
, “
Isomonodromic tau-functions from Liouville conformal blocks
,”
Commun. Math. Phys.
336
(
2
),
671
694
(
2015
).
44.
Iwasaki
,
K.
,
Kimura
,
H.
,
Shimomura
,
S.
, and
Yoshida
,
M.
,
From Gauss to Painlevé: A Modern Theory of Special Functions
,
Aspects of Mathematics Vol. 16
(
Braunschwieg-Vieweg
,
1991
).
45.
Jimbo
,
M.
,
Miwa
,
T.
, and
Ueno
,
K.
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function
,”
Physica D
2
,
306
352
(
1981
).
46.
Jimbo
,
M.
and
Miwa
,
T.
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
,”
Physica D
2
,
407
448
(
1981
).
47.
Joshi
,
N.
, “
The second Painlevé equation in the large parameter limit I: Local asymptotic analysis
,”
Stud. Appl. Math.
102
,
345
373
(
1999
).
48.
Joshi
,
N.
and
Kruskal
,
M. D.
, “
The Painlevé connection problem: An asymptotic approach. I
,”
Stud. Appl. Math.
86
(
4
),
315
376
(
1992
).
49.
Lisovyy
,
O.
and
Tykhyy
,
Y.
, “
Algebraic solutions of the sixth Painlevé equation
,”
J. Geom. Phys.
85
,
124
163
(
2014
).
50.
Malmquist
,
J.
, “
Sur les équations différentielles du second ordre dont l’intégrale général a ses points critiques fixes
,”
Ark. Mat. Astr. Fys.
17
,
1
89
(
1922
).
51.
Marchal
,
O.
,
Orantin
,
N.
, and
Alameddine
,
M.
, “
Hamiltonian representation of isomonodromic deformations of general rational connections on gl(2,C)
,” arXiv:2212.04833.
52.
Mazzocco
,
M.
and
Mo
,
M. Y.
, “
The Hamiltonian structure of the second Painlevé hierarchy
,”
Nonlinearity
20
,
2845
2882
(
2007
).
53.
Oblezin
,
S. V.
, “
Discrete symmetries of systems of isomonodromic deformations of second-order Fuchsian differential equations
,”
Funct. Anal. Appl.
38
,
111
124
(
2004
).
54.
Okamoto
,
K.
, “
Polynomial Hamiltonians associated with Painlevé equations. I
,”
Proc. Jpn. Acad., Ser. A
56
(
6
),
264
268
(
1980
).
55.
Okamoto
,
K.
, “
Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV
,”
Math. Ann.
275
,
221
255
(
1986
).
56.
Painlevé
,
P.
, “
Mémoire sur les équations différentielles dont l’intégrale generale est uniforme
,”
Bull. Soc. Math. Fr.
28
,
201
261
(
1900
).
57.
Painlevé
,
P.
, “
Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme
,”
Acta Math.
25
,
1
85
(
1902
).
58.
Painlevé
,
P.
, “
Sur les équations différentielles du second ordre aux points critiques fixes
,”
C. R. Acad. Sci. Paris
143
,
1111
1117
(
1906
).
59.
Picard
,
E.
, “
Mémoire sur la théorie des functions algébriques de deux variable
,”
J. Liouville
5
,
135
319
(
1889
).
60.
Reyman
,
A. G.
and
Semenov-Tian-Shansky
,
M. A.
, “
Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I
,”
Inventiones Math.
54
,
81
100
(
1979
);
Reyman
,
A. G.
and
Semenov-Tian-Shansky
,
M. A.
Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II
,”
Inventiones Math.
63
, 423432 (
1981
).
61.
Reyman
,
A. G.
and
Semenov-Tian-Shansky
,
M. A.
, “
Compatible Poisson structures for Lax equations: An r-matrix approach
,”
Phys. Lett. A
130
,
456
460
(
1989
).
62.
Sato
,
M.
, “
Soliton equations as dynamical systems on infinite dimensional Grassmann manifold
,”
Kokyuroku, RIMS
1981
,
30
46
.
63.
Schlesinger
,
L.
, “
Uber eine klasse von differentialsystemen beliebiger ordnung mit festen kritischen punkten
,”
J. Reine Angew. Math.
1912
(
141
),
96
.
64.
Semenov-Tian-Shansky
,
M. A.
, “
What is a classical r-matrix
,”
Funct. Anal. Appl.
17
,
259
272
(
1983
).
65.
Segal
,
G.
and
Wilson
,
G.
, “
Loop groups and equations of KdV type
,”
Publ. Math. IHÉS
61
(
6
),
5
65
(
1985
).
66.
Sibuya
,
Y.
,
Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation
,
Translations of Mathematical Monographs Vol. 82
(
American Mathematical Society
,
1990
).
67.
Ugaglia
,
M.
, “
On a Poisson structure on the space of stokes matrices
,”
Int. Math. Res. Not.
1999
(
9
),
473
493
.
68.
Wasow
,
W.
,
Asympotic Expansions for Ordinary Differential Equations
(
Dover
,
1987
).
69.
Woodhouse
,
N. M. J.
, “
The symplectic and twistor geometry of the general isomonodromic deformation problem
,”
J. Geom. Phys.
39
(
2
),
97
128
(
2001
).
70.
Woodhouse
,
N. M. J.
, “
Duality for the general isomonodromy problem
,”
J. Geom. Phys.
57
(
4
),
1147
1170
(
2007
).
71.
Yamakawa
,
D.
, “
Tau functions and Hamiltonians of isomonodromic deformations
,”
Josai Math. Monog.
10
,
139160
(
2017
).
72.

We now recognize these as the classical limit of the general rank-r Gaudin systems,23 which were studied much later as models for quantum integrable spin chains.

73.

The notation 0cν0 for the “explicit derivatives” will be changed to cν in what follows and, more generally, t0t0 for the further deformation parameters {t=tjaν} to be introduced in (1.41a) and (1.41b).

74.

The various local Laurent series {λa(z)} near {z=cν}ν=1,,N, depend, of course, on ν as well, but we omit indicating this explicitly to avoid a plethora of indices.

75.

The notation (·)sing means the principal part at a particular point cνP1, which should be clear from the context or, if not, will be specified.

You do not currently have access to this content.