We give a short account of our new approach to study models in the Kardar–Parisi–Zhang universality class by connecting them to free fermions at positive temperature. Our ideas and methods are explained mainly for the semi-discrete directed polymer model due to O’Connell and Yor.

1.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
Benjamin
,
1969
).
2.
F.
Spitzer
, “
Interaction of Markov processes
,”
Adv. Math.
5
,
246
290
(
1970
).
3.
T. M.
Liggett
,
Interacting Particle Systems
(
Springer-Verlag
,
1985
).
4.
T. M.
Liggett
,
Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes
(
Springer-Verlag
,
1999
).
5.
C.
Kipnis
and
C.
Landim
,
Scaling Limits of Interacting Particle Systems
(
Springer
,
1999
).
6.
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Academic
,
1982
).
7.
A.
Borodin
and
L.
Petrov
, “
Lectures on Integrable probability: Stochastic vertex models and symmetric functions
,” in
Lecture Notes of the Les Houches Summer School
(
Oxford University Press
,
2016
), Vol.
104
; arXiv:1605.01349 [math.PR].
8.
M.
Kardar
,
G.
Parisi
, and
Y.-C.
Zhang
, “
Dynamic scaling of growing interfaces
,”
Phys. Rev. Lett.
56
,
889
892
(
1986
).
9.
A. L.
Barabási
and
H. E.
Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
1995
).
10.
I.
Corwin
, “
The Kardar–Parisi–Zhang equation and universality class
,”
Random Matrices: Theory Appl.
1
,
1130001
(
2012
).
11.
T.
Sasamoto
, “
The 1D Kardar–Parisi–Zhang equation: Height distribution and universality
,”
Prog. Theor. Exp. Phys.
2016
,
022A01
.
12.
L.
Bertini
and
G.
Giacomin
, “
Stochastic Burgers and KPZ equations from particle systems
,”
Commun. Math. Phys.
183
,
571
607
(
1997
).
13.
M.
Hairer
, “
Solving the KPZ equation
,”
Ann. Math.
178
,
559
664
(
2013
).
14.
M.
Gubinelli
and
N.
Perkowski
, “
KPZ reloaded
,”
Commun. Math. Phys.
349
,
165
269
(
2017
).
15.
A.
Kupiainen
, “
Renormalization group and stochastic PDE’s
,”
Ann. Henri Poincaré
17
,
497
535
(
2016
).
16.
T.
Sasamoto
and
H.
Spohn
, “
The crossover regime for the weakly asymmetric simple exclusion process
,”
J. Stat. Phys.
140
,
209
231
(
2010
).
17.
T.
Sasamoto
and
H.
Spohn
, “
Exact height distributions for the KPZ equation with narrow wedge initial condition
,”
Nucl. Phys. B
834
,
523
542
(
2010
).
18.
T.
Sasamoto
and
H.
Spohn
, “
One-dimensional Kardar–Parisi–Zhang equation: An exact solution and its universality
,”
Phys. Rev. Lett.
104
,
230602
(
2010
).
19.
T.
Sasamoto
and
H.
Spohn
, “
The 1 + 1-dimensional Kardar–Parisi–Zhang equation and its universality class
,”
J. Stat. Mech.
2010
,
P11013
.
20.
G.
Amir
,
I.
Corwin
, and
J.
Quastel
, “
Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions
,”
Commun. Pure Appl. Math.
64
,
466
537
(
2011
).
21.
C. A.
Tracy
and
H.
Widom
, “
Level-spacing distributions and the Airy kernel
,”
Commun. Math. Phys.
159
,
151
174
(
1994
).
22.
C. A.
Tracy
and
H.
Widom
, “
Asymptotics in ASEP with step initial condition
,”
Commun. Math. Phys.
290
,
129
154
(
2009
).
23.
P.
Calabrese
,
P.
Le Doussal
, and
A.
Rosso
, “
Free-energy distribution of the directed polymer at high temperature
,”
Eur. Phys. Lett.
90
,
200002
(
2010
).
24.
V.
Dotsenko
, “
Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers
,”
Eur. Phys. Lett.
90
,
200003
(
2010
).
25.
T.
Imamura
,
M.
Mucciconi
, and
T.
Sasamoto
, “
Identity between restricted Cauchy sums for the q-Whittaker and skew Schur polynomials
,” arXiv:2106.11913 [math.CO].
26.
T.
Imamura
,
M.
Mucciconi
, and
T.
Sasamoto
, “
Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials
,” arXiv:2106.11922 [math.CO].
27.
A.
Borodin
and
I.
Corwin
, “
MacDonald processes
,”
Probab. Theory Relat. Fields
158
,
225
400
(
2014
).
28.
A.
Borodin
, “
Periodic Schur process and cylindric partitions
,”
Duke J. Math.
140
(
3
),
391
468
(
2007
).
29.
D.
Betea
and
J.
Bouttier
, “
The periodic Schur process and free fermions at finite temperature
,”
Math. Phys., Anal. Geom.
22
,
3
(
2019
).
30.
T.
Imamura
,
M.
Mucciconi
, and
T.
Sasamoto
, “
Solvable models in the KPZ class: Approach through periodic and free boundary Schur measures
,” arXiv:2204.08420.
31.
A.
Borodin
, “
Stochastic higher spin six vertex model and Madconald measures
,”
J. Math. Phys.
59
,
023301
(
2018
).
32.
N.
O’Connell
and
M.
Yor
, “
Brownian analogues of Burke’s theorem
,”
Stochastic Processes Appl.
96
,
285
304
(
2001
).
33.
A.
Borodin
,
I.
Corwin
, and
D.
Remenik
, “
Log-gamma polymer free energy fluctuations via a Fredholm determinant identity
,”
Commun. Math. Phys.
324
,
215
232
(
2013
).
34.
T.
Imamura
and
T.
Sasamoto
, “
Free energy distribution of the stationary O’Connell–Yor directed random polymer model
,”
J. Phys. A: Math. Theor.
50
,
285203
(
2017
).
35.
Y.
Baryshnikov
, “
GUEs and queues
,”
Prob. Th. Rel. Fields
119
,
256
274
(
2001
).
36.
J.
Gravner
,
C. A.
Tracy
, and
H.
Widom
, “
A growth model in a random environment
,”
Ann. Probab.
30
,
1340
1369
(
2002
).
37.
M. L.
Mehta
,
Random Matrices
,
3rd ed.
(
Elsevier
,
2004
).
38.
P. J.
Forrester
,
Log Gases and Random Matrices
(
Princeton University Press
,
2010
).
39.
G. E.
Andrews
,
R.
Askey
, and
R.
Roy
,
Special Functions
,
Encyclopedia of Mathematics and its Applications Vol. 71
(
Cambridge University Press
,
1999
).
40.
J.
Warren
, “
Dyson’s Brownian motions, intertwining and interlacing
,”
Electron. J. Probab.
12
,
573
590
(
2007
).
41.
T.
Sasamoto
, “
A note on a few processes related to Dyson’s Brownian motion
,”
RIMS Kkyroku Bessatsu
B27
,
123
139
(
2011
).
42.
J.
Warren
and
P.
Windridge
, “
Some examples of dynamics for Gelfand-Tsetlin patters
,”
Electron. J. Probab.
14
,
1745
1769
(
2009
).
43.
N.
O’Connell
, “
Directed polymers and the quantum Toda lattice
,”
Ann. Prob.
40
,
437
458
(
2012
).
44.
M.
Toda
,
Theory of Nonlinear Lattices
,
2nd ed.
(
Springer
,
1989
).
45.
T.
Imamura
and
T.
Sasamoto
, “
Determinantal structures in the O’Connell-Yor directed random polymer model
,”
J. Stat. Phys.
163
,
675
713
(
2016
).
46.
A.
Borodin
,
I.
Corwin
, and
T.
Sasamoto
, “
From duality to determinants for q-TASEP and ASEP
,”
Ann. Prob.
42
,
2314
2382
(
2014
).
47.
I.
Corwin
and
L.
Petrov
, “
Stochastic higher spin vertex models on the line
,”
Commun. Math. Phys.
343
(
2
),
651
700
(
2016
); arXiv:1502.07374 [math.PR].
48.
K.
Matveev
and
L.
Petrov
, “
q-randomized Robinson–Schensted–Knuth correspondences and random polymers
,”
Ann. Inst. Henri Poincaré D
4
,
1
123
(
2017
).
49.
Y. B.
Sanderson
, “
On the connection between MacDonald polynomials and Demazure characters
,”
J. Algebraic Combinatorics
11
,
269
275
(
2000
).
50.
A.
Nakayashiki
and
Y.
Yamada
, “
Kostka polynomials and energy functions in solvable lattice models
,”
Sel. Math.
3
,
547
599
(
1997
).
51.
B. E.
Sagan
and
R. P.
Stanley
, “
Robinson-Schensted algorithms for skew tableaux
,”
J. Comb. Theory, Ser. A
55
(
2
),
161
193
(
1990
).
52.
D.
Takahashi
and
J.
Satsuma
, “
A soliton cellular automaton
,”
J. Phys. Soc. Jpn.
59
(
10
),
3514
3519
(
1990
).
53.
R.
Inoue
,
A.
Kuniba
, and
T.
Takagi
, “
Integrable structure of box–ball systems: Crystal, Bethe ansatz, ultradiscretization and tropical geometry
,”
J. Phys. A: Math. Theor.
45
(
7
),
073001
(
2012
).
54.
M.
Kashiwara
, “
Crystalizing the q-analogue of universal enveloping algebras
,”
Commun. Math. Phys.
133
(
2
),
249
260
(
1990
).
55.
M.
Kashiwara
, “
On crystal bases of the Q-analogue of universal enveloping algebras
,”
Duke Math. J.
63
(
2
),
465
516
(
1991
).
56.
G.
Lusztig
, “
Canonical bases arising from quantized enveloping algebras
,”
J. Am. Math. Soc.
3
(
2
),
447
498
(
1990
).
57.
A.
Borodin
,
A.
Bufetov
, and
M.
Wheeler
, “
Between the stochastic six vertex model and Hall-Littlewood processes
,”
Duke Math. J.
167
(
13
),
2457
2529
(
2018
).
58.
G.
Barraquand
,
A.
Borodin
,
I.
Corwin
, and
M.
Wheeler
, “
Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process
,”
Duke Math. J.
167
(
13
),
2457
2529
(
2018
).
59.
G.
Barraquand
,
A.
Borodin
, and
I.
Corwin
, “
Half-space MacDonald processes
,”
Forum Math.
8
,
e11
(
2020
).
60.
J.
Baik
and
E. M.
Rains
, “
Limiting distributions for a polynuclear growth model with external sources
,”
J. Stat. Phys.
100
,
523
541
(
2000
).
61.
A.
Soshnikov
, “
Determinantal random point fields
,”
Russ. Math. Surv.
55
,
923
975
(
2000
).
62.
T.
Shirai
and
Y.
Takahashi
, “
Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and boson point processes
,”
J. Funct. Anal.
205
,
414
463
(
2003
).
63.
A.
Borodin
, “
Determinantal point processes
,” in
The Oxford Handbook of Random Matrix Theory
(
Oxford University Press
,
Oxford
,
2015
), p.
2009
.
64.
W.
Fulton
,
Young Tableaux
(
Cambridge University Press
,
Cambridge
,
1997
).
65.
R. P.
Stanley
,
Enumerative Combinatorics 2
(
Springer
,
1999
).
66.
B. E.
Sagan
,
The Symmetric Group: Representations, Combinatorial Algorithm, and Symmetric Functions
,
2nd ed.
(
Springer
,
2000
).
67.
K.
Johansson
, “
Shape fluctuations and random matrices
,”
Commun. Math. Phys.
209
,
437
476
(
2000
).
68.
T.
Sasamoto
, “
Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques
,”
J. Stat. Mech.
2007
,
P07007
.
You do not currently have access to this content.