A sequence of invertible matrices given by a small random perturbation around a fixed diagonal partially hyperbolic matrix induces a random dynamics on the Grassmann manifolds. Under suitable weak conditions, it is known to have a unique invariant (Furstenberg) measure. The main result gives concentration bounds on this measure, showing that with high probability, the random dynamics stays in the vicinity of stable fixed points of the unperturbed matrix, in a regime where the strength of the random perturbation dominates the local hyperbolicity of the diagonal matrix. As an application, bounds on sums of Lyapunov exponents are obtained.

1.
Y.
Benoist
and
J.-F.
Quint
,
Random Walks on Reductive Groups
(
Springer
,
Cham
,
2016
).
2.
P.
Bougerol
and
J.
Lacroix
,
Products of Random Matrices with Applications to Schrödinger Operators
(
Birkhäuser
,
Boston
,
1985
).
3.
F.
Dorsch
and
H.
Schulz-Baldes
, “
Random perturbations of hyperbolic dynamics
,”
Electron. J. Probab.
24
(
89
),
1
23
(
2019
).
4.
Y.-C.
Wong
, “
Differential geometry of Grassmann manifolds
,”
Proc. Natl. Acad. Sci. U. S. A.
57
,
589
594
(
1967
).
5.
R.
Carmona
and
J. M.
Lacroix
,
Spectral Theory of Random Schrödinger Operators
(
Birkhäuser
,
Basel
,
1990
).
6.
R.
Römer
and
H.
Schulz-Baldes
, “
The random phase property and the Lyapunov spectrum for disordered multi-channel systems
,”
J. Stat. Phys.
140
,
122
153
(
2010
).
7.
H.
Schulz-Baldes
, “
Perturbation theory for Lyapunov exponents of an Anderson model on a strip
,”
Geom. Funct. Anal.
14
,
1089
1117
(
2004
).
8.
J.
Bellissard
, “
Random matrix theory and the Anderson model
,”
J. Stat. Phys.
116
,
739
754
(
2004
).
9.
M.
Aizenman
and
S.
Warzel
,
Random Operators
(
AMS
,
Providence
,
2015
).
10.
C.
Sadel
and
B.
Virág
, “
A central limit theorem for products of random matrices and GOE statistics for the Anderson model on long boxes
,”
Commun. Math. Phys.
343
,
881
919
(
2016
).
11.
S.
Bachmann
and
W.
De Roeck
, “
From the Anderson model on a strip to the DMPK equation and random matrix theory
,”
J. Stat. Phys.
139
,
541
564
(
2010
).
12.
B.
Valkó
and
B.
Virág
, “
Random Schrödinger operators on long boxes, noise explosion and the GOE
,”
Trans. Am. Math. Soc.
366
,
3709
3728
(
2014
).
13.
C.
Sadel
and
H.
Schulz-Baldes
, “
Random Lie group actions on compact manifolds: A perturbative analysis
,”
Ann. Probab.
38
,
2224
2257
(
2010
).
14.
Y.
Kato
,
Perturbation Theory for Linear Operators
(
Springer International
,
New York
,
2013
).
You do not currently have access to this content.