We prove that a disordered analog of the Su–Schrieffer–Heeger model exhibits dynamical localization (i.e., the fractional moment condition) at all energies except possibly zero energy, which is singled out by chiral symmetry. Localization occurs at arbitrarily weak disorder, provided it is sufficiently random. If furthermore the hopping probability measures are properly tuned so that the zero energy Lyapunov spectrum does not contain zero, then the system exhibits localization also at that energy, which is of relevance for topological insulators. The method also applies to the usual Anderson model on the strip.

1.
H.
Kunz
and
B.
Souillard
, “
Sur le spectre des opérateurs aux différences finies aléatoires
,”
Commun. Math. Phys.
78
(
2
),
201
246
(
1980
).
2.
A.
Klein
,
J.
Lacroix
, and
A.
Speis
, “
Localization for the Anderson model on a strip with singular potentials
,”
J. Funct. Anal.
94
(
1
),
135
155
(
1990
).
3.
S.
Jitomirskaya
,
H.
Schulz-Baldes
, and
G.
Stolz
, “
Delocalization in random polymer models
,”
Commun. Math. Phys.
233
(
1
),
27
48
(
2003
).
4.
D.
Damanik
,
R.
Sims
, and
G.
Stolz
, “
Localization for one-dimensional, continuum, Bernoulli-Anderson models
,”
Duke Math. J.
114
(
1
),
59
100
(
2002
).
5.
H.
Boumaza
, “
Localization for an Anderson-Bernoulli model with generic interaction potential
,”
Tohoku Math. J.
65
(
1
),
57
74
(
2013
).
6.
G. M.
Graf
and
J.
Shapiro
, “
The bulk-edge correspondence for disordered chiral chains
,”
Commun. Math. Phys.
363
(
3
),
829
846
(
2018
).
7.
A.
Altland
and
M. R.
Zirnbauer
, “
Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
,”
Phys. Rev. B
55
,
1142
1161
(
1997
).
8.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
9.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
1701
(
1979
).
10.
M.
Aizenman
and
G. M.
Graf
, “
Localization bounds for an electron gas
,”
J. Phys. A: Math. Gen.
31
,
6783
6806
(
1998
).
11.
D.
Damanik
and
P.
Stollmann
, “
Multi-scale analysis implies strong dynamical localization
,”
Geom. Funct. Anal.
11
(
1
),
11
29
(
2001
).
12.
R.
Carmona
,
A.
Klein
, and
F.
Martinelli
, “
Anderson localization for Bernoulli and other singular potentials
,”
Commun. Math. Phys.
108
(
1
),
41
66
(
1987
).
13.
Y.
Guivarch
and
A.
Raugi
, “
Frontière de furstenberg, propriétés de contraction et théorèmes de convergence
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
69
(
2
),
187
242
(
1985
).
14.
J.
Chapman
and
G.
Stolz
, “
Localization for random block operators related to the XY spin chain
,”
Ann. Henri Poincare
16
(
2
),
405
435
(
2015
).
15.
C.
Sadel
and
H.
Schulz-Baldes
, “
Random Dirac operators with time reversal symmetry
,”
Commun. Math. Phys.
295
(
1
),
209
242
(
2010
).
16.
A. W. W.
Ludwig
,
H.
Schulz-Baldes
, and
M.
Stolz
, “
Lyapunov spectra for all ten symmetry classes of quasi-one-dimensional disordered systems of non-interacting Fermions
,”
J. Stat. Phys.
152
(
2
),
275
304
(
2013
).
17.
J.
Asch
,
O.
Bourget
, and
A.
Joye
, “
Localization properties of the Chalker–Coddington model
,”
Ann. Henri Poincare
11
(
7
),
1341
1373
(
2010
).
18.
S.
Attal
,
A.
Joye
, and
C.-A.
Pillet
,
Open Quantum Systems I. The Hamiltonian Approach
(
Springer
,
Berlin
,
2006
).
19.
A.
Elgart
,
G. M.
Graf
, and
J.
Schenker
, “
Equality of the bulk and edge Hall conductances in a mobility gap
,”
Commun. Math. Phys.
261
(
2
),
545
(
2005
).
20.
P. D.
Hislop
, “
Lectures on random Schrödinger operators
,” in
Fourth Summer School in Analysis and Mathematical Physics
,
Contemporary Mathematics Vol. 476
(
American Mathematical Society
,
Providence, RI
,
2008
), pp.
41
131
.
21.
W.
Kirsch
, “
An invitation to random Schrödinger operators
,” arXiv:0709.3707 (
2007
).
22.
P.
Bougerol
,
Lacroix: Products of Random Matrices with Applications to Schrödinger Operators
,
Progress in Probability
(
Birkhäuser
,
2012
).
23.
G. E.
Bredon
,
Topology and Geometry
,
Graduate Texts in Mathematics
(
Springer
,
1993
).
24.
B.
Simon
, “
Localization in general one dimensional random systems, I. Jacobi matrices
,”
Commun. Math. Phys.
102
(
2
),
327
336
(
1985
).
25.
I. Y.
Goldsheid
and
G. A.
Margulis
, “
Lyapunov indices of a product of random matrices
,”
Russ. Math. Surv.
44
(
5
),
11
(
1989
).
26.
R.
Carmona
and
J.
Lacroix
,
Spectral Theory of Random Schrödinger Operators
(
Birkhäuser
,
Boston
,
1990
).
27.
G. M.
Graf
, “
Anderson localization and the space-time characteristic of continuum states
,”
J. Stat. Phys.
75
(
1
),
337
346
(
1994
).
28.
M.
Aizenman
,
J. H.
Schenker
,
R. M.
Friedrich
, and
D.
Hundertmark
, “
Finite-volume fractional-moment criteria for Anderson localization
,”
Commun. Math. Phys.
224
(
1
),
219
253
(
2001
).
29.
J. M.
Combes
and
L.
Thomas
, “
Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators
,”
Commun. Math. Phys.
34
,
251
270
(
1973
).
30.

To be compatible with the rest of this paper, we denote a size of a matrix here by L instead of the usual N in the literature; the usual name of the conjecture is “the N conjecture.”

31.
G.
Casati
,
L.
Molinari
, and
F.
Izrailev
, “
Scaling properties of band random matrices
,”
Phys. Rev. Lett.
64
,
1851
1854
(
1990
).
32.
G.
Casati
,
B. V.
Chirikov
,
I.
Guarneri
, and
F. M.
Izrailev
, “
Band-random-matrix model for quantum localization in conservative systems
,”
Phys. Rev. E
48
,
R1613
R1616
(
1993
).
33.
J.
Schenker
, “
Eigenvector localization for random band matrices with power law band width
,”
Commun. Math. Phys.
290
(
3
),
1065
1097
(
2009
).
34.
R.
Peled
,
J.
Schenker
,
M.
Shamis
, and
S.
Sodin
, “
On the Wegner orbital model
,”
Int. Math. Res. Not.
2019
(
4
),
1030
1058
(
2017
).
35.
P.
Bourgade
,
L.
Erdős
,
H.-T.
Yau
, and
J.
Yin
, “
Universality for a class of random band matrices
,”
Adv. Theor. Math. Phys.
21
(
3
),
739
800
(
2017
).
36.
P.
Bourgade
,
H.-T.
Yau
, and
J.
Yin
, “
Random band matrices in the delocalized phase I: Quantum unique ergodicity and universality
,”
Commun. Pure Appl. Math.
73
(
7
),
1526
1596
(
2020
).
37.
T.
Shcherbina
, “
On the second mixed moment of the characteristic polynomials of 1D band matrices
,”
Commun. Math. Phys.
328
(
1
),
45
82
(
2014
).
38.
M.
Shcherbina
and
T.
Shcherbina
, “
Characteristic polynomials for 1D random band matrices from the localization side
,”
Commun. Math. Phys.
351
(
3
),
1009
1044
(
2017
).
39.
C. M.
Newman
, “
The distribution of Lyapunov exponents: Exact results for random matrices
,”
Commun. Math. Phys.
103
(
1
),
121
126
(
1986
).
40.
J.
Shapiro
and
C.
Tauber
, “
Strongly disordered Floquet topological systems
,”
Ann. Henri Poincare
20
(
6
),
1837
1875
(
2019
).
You do not currently have access to this content.