A semiclassical argument is used to show that the low-lying spectrum of a self-adjoint operator, the so-called spectral localizer, determines the number of Dirac or Weyl points of an ideal semimetal. Apart from the ion-mobility spectrometer localization procedure, an explicit computation for the local toy models given by a Dirac or Weyl point is the key element of proof. The argument has numerous similarities to Witten’s reasoning leading to the strong Morse inequalities. The same techniques allow to prove a spectral localization for Callias operators associated with potentials with isolated gap-closing points.
REFERENCES
1.
H.
Schulz-Baldes
and T.
Stoiber
, “Invariants of disordered semimetals via the spectral localizer
,” Europhys. Lett.
136
, 27001
(2021
).2.
E.
Lozano Viesca
, J.
Schober
, and H.
Schulz-Baldes
, “Chern numbers as half-signature of the spectral localizer
,” J. Math. Phys.
60
, 072101
(2019
).3.
H.
Weyl
, “Gravitation and the electron
,” Proc. Natl. Acad. Sci. U. S. A.
15
, 323
–334
(1929
).4.
C.
Wahl
, “Spectral flow and winding number in von Neumann algebras
,” J. Inst. Math. Jussieu
7
, 589
–619
(2008
).5.
J.
Kaad
and M.
Lesch
, “Spectral flow and the unbounded Kasparov product
,” Adv. Math.
248
, 495
–530
(2013
).6.
K.
van den Dungen
, “The index of generalised Dirac-Schrödinger operators
,” J. Spectral Theory
9
, 1459
–1506
(2019
).7.
Y.
Kubota
, “The joint spectral flow and localization of the indices of elliptic operators
,” Ann. K-Theory
1
, 43
–83
(2016
).8.
H.
Schulz-Baldes
and T.
Stoiber
, Harmonic Analysis in Operator Algebras and Its Applications to Index Theory and Solid State Systems
(Springer
, Cham
, 2022
).9.
J.
Robbin
and D.
Salamon
, “The spectral flow and the Maslov index
,” Bull. London Math. Soc.
27
, 1
–33
(1995
).10.
A.
Abbondandolo
and P.
Majer
, “Ordinary differential operators in Hilbert spaces and Fredholm pairs
,” Math. Z.
243
, 525
–562
(2003
).11.
D. J.
Thouless
, M.
Kohmoto
, M. P.
Nightingale
, and M.
den Nijs
, “Quantized Hall conductance in a two-dimensional periodic potential
,” Phys. Rev. Lett.
49
, 405
–408
(1982
).12.
J.
Bellissard
, “Ordinary quantum Hall effect and non-commutative cohomology
,” in Proceedings of the Bad Schandau Conference on Localization
, Teubner Texte Physics, edited by W.
Ziesche
and P.
Weller
(Teubner-Verlag
, Leipzig
, 1988
), Vol. 16.13.
J.
Bellissard
, A.
van Elst
, and H.
Schulz-Baldes
, “The noncommutative geometry of the quantum Hall effect
,” J. Math. Phys.
35
, 5373
–5451
(1994
).14.
15.
E.
Prodan
and H.
Schulz-Baldes
, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(Springer International
, Cham
, 2016
).16.
A.
Drouot
, “Ubiquity of conical points in topological insulators
,” J. Ec. Polytech.–Math.
8
, 507
–532
(2021
).17.
J.
von Neumann
and E.
Wigner
, “Über das Verhalten von Eigemwerten bei adiabatischen Prozessen
,” Phys. Z.
30
, 467
–470
(1929
).18.
D.
Vanderbilt
, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators
(Cambridge University Press
, 2018
).19.
N. P.
Armitage
, E. J.
Mele
, and A.
Vishwanath
, “Weyl and Dirac semimetals in three-dimensional solids
,” Rev. Mod. Phys.
90
, 015001
(2018
).20.
T.
Loring
and H.
Schulz-Baldes
, “Finite volume calculation of K-theory invariants
,” New York J. Math.
22
, 1111
–1140
(2017
).21.
T.
Loring
and H.
Schulz-Baldes
, “The spectral localizer for even index pairings
,” J. Noncommutative Geom.
14
, 1
–23
(2020
).22.
N.
Doll
and H.
Schulz-Baldes
, “Skew localizer and -flows for real index pairings
,” Adv. Math.
392
, 108038
(2021
).23.
N.
Doll
and H.
Schulz-Baldes
, “Approximate symmetries and conservation laws in topological insulators and associated -invariants
,” Ann. Phys.
419
, 168238
(2020
).24.
H.
Schulz-Baldes
and T.
Stoiber
, “The spectral localizer for semifinite spectral triples
,” Proc. Am. Math. Soc.
149
, 121
–134
(2021
).25.
T.
Loring
, “Bulk spectrum and K-theory for infinite-area topological quasicrystals
,” J. Math. Phys.
60
, 081903
(2019
).26.
A.
Cerjan
and T. A.
Loring
, “Local invariants identify topological in metals and gapless systems
,” Phys. Rev. B
106
, 064109
(2022
).27.
A. L.
Carey
and H.
Schulz-Baldes
, “Spectral flow of monopole insertion in topological insulators
,” Commun. Math. Phys.
370
, 895
–923
(2019
).28.
B.
Simon
, “Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: Asymptotic expansions
,” Ann. I.H.P.: Phys. Theor.
38
, 295
–308
(1983
).29.
30.
J. M.
Gracia-Bondía
, J. C.
Várilly
, and H.
Figueroa
, Elements of Noncommutative Geometry
(Birkhäuser
, Boston
, 2001
).31.
M. F.
Atiyah
, V. K.
Patodi
, and I. M.
Singer
, “Spectral asymmetry and Riemannian geometry. III
,” Math. Proc. Cambridge Philos. Soc.
79
, 71
–99
(1976
).32.
E.
Getzler
, “The odd chern character in cyclic homology and spectral flow
,” Topology
32
, 489
–507
(1993
).33.
H. L.
Cycon
, R.
Froese
, W.
Kirsch
, and B.
Simon
, Schrödinger Operators: With Application to Quantum Mechanics and Global Geometry
, 2nd ed.
(Springer
, Heidelberg
, 2009
).34.
M. A.
Shubin
, “Semiclassical asymptotics on covering manifolds and Morse inequalities
,” Geom. Funct. Anal.
6
, 370
–409
(1996
).35.
B.
Helffer
and J.
Sjöstrand
, “Puits multiples en mécanique semi-classique IV: Étude du complexe de Witten
,” Commun. Partial Differ. Equations
10
, 245
–340
(1985
).36.
B.
Helffer
and J.
Sjöstrand
, “Analyse semi-classique pour l’équation de Harper. II: Comportement semi-classique près d’un rationnel
,” Mem. Soc. Math. Fr.
40
, 148
(1990
).37.
M.
Dimassi
and J.
Sjöstrand
, Spectral Asymptotics in the Semi-Classical Limit
(Cambridge University Press
, Cambridge
, 1999
).38.
V.
Mathai
and G. C.
Thiang
, “Differential topology of semimetals
,” Commun. Math. Phys.
355
, 561
–602
(2017
).39.
H. B.
Nielsen
and M.
Ninomiya
, “The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
,” Phys. Lett. B
130
, 389
–396
(1983
).40.
D.
Friedan
, “A proof of the Nielsen-Ninomiya theorem
,” Commun. Math. Phys.
85
, 481
–490
(1982
).41.
V.
Mathai
and G. C.
Thiang
, “Global topology of Weyl semimetals and Fermi arcs
,” J. Phys. A: Math. Theor.
50
, 11LT01
(2017
).42.
M.
Leitner
, “Zero field Hall effect in (2 + 1)-dimensional QED
,” Adv. Theor. Math. Phys.
12
, 475
–487
(2008
).43.
G.
Bal
, “Topological invariants for interface modes
,” Commun. Partial Differ. Equations
47
, 1636
–1679
(2022
).44.
M. F. L.
Golterman
, K.
Jansen
, and D. B.
Kaplan
, “Chern-Simons currents and chiral fermions on the lattice
,” Phys. Lett. B
301
, 219
–223
(1993
).45.
G.
Bal
, “Continuous bulk and interface description of topological insulators
,” J. Math. Phys.
60
, 081506
(2019
).46.
C.
Callias
, “Axial anomalies and index theorems on open spaces
,” Commun. Math. Phys.
62
, 213
–234
(1978
).47.
F.
Gesztesy
and M.
Waurick
, The Callias Index Formula Revisited
, Lecture Notes in Mathematics (Springer
, Berlin
, 2016
), Vol. 2157.48.
E.
Witten
, “Supersymmetry and Morse theory
,” J. Differ. Geom.
17
, 661
–692
(1982
).49.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics I to IV
(Academic Press
, New York
, 1975
).50.
H.
Schulz-Baldes
and T.
Stoiber
, “Callias-type operators associated to spectral triples
,” J. Noncommutative Geom.
17
, 527
(2023
).51.
H.
Feng
, W.
Li
, and W.
Zhang
, “A Poincaré-Hopf type formula for Chern character numbers
,” Math. Z.
269
, 401
–410
(2011
).52.
J.
Phillips
, “Self-adjoint Fredholm operators and spectral flow
,” Can. Math. Bull.
39
, 460
–467
(1996
).53.
E.
Guentner
and N.
Higson
, “A note on Toeplitz operators
,” Int. J. Math.
07
, 501
–513
(1996
).54.
J.
Fox
and P.
Haskell
, “K homology and regular singular Dirac–Schrödinger operators on even-dimensional manifolds
,” Pac. J. Math.
180
, 251
–272
(1997
).55.
J.
Kaad
and M.
Lesch
, “A local global principle for regular operators in Hilbert C*-modules
,” J. Funct. Anal.
262
, 4540
–4569
(2012
).56.
P. F.
Baum
and E.
van Erp
, “K-homology and Fredholm operators I: Dirac operators
,” J. Geom. Phys.
134
, 101
–118
(2018
).57.
58.
P. D.
Hislop
, “Exponential decay of two-body eigenfunctions: A review
,” in Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory, Berkeley, CA, 11–13 June 1999 (University of California, Berkeley, 2000
), Vol. 4, pp. 265
–288
, available at https://ejde.math.txstate.edu/conf-proc/04/h2/abstr.html.59.
C. R.
de Oliveira
, Intermediate Spectral Theory and Quantum Dynamics
(Birkhäuser
, Basel
, 2009
).60.
B.
Helffer
and J.
Sjöstrand
, “Multiple wells in the semi-classical limit I
,” Commun. Partial Differ. Equations
9
, 337
–408
(1984
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.