A semiclassical argument is used to show that the low-lying spectrum of a self-adjoint operator, the so-called spectral localizer, determines the number of Dirac or Weyl points of an ideal semimetal. Apart from the ion-mobility spectrometer localization procedure, an explicit computation for the local toy models given by a Dirac or Weyl point is the key element of proof. The argument has numerous similarities to Witten’s reasoning leading to the strong Morse inequalities. The same techniques allow to prove a spectral localization for Callias operators associated with potentials with isolated gap-closing points.

1.
H.
Schulz-Baldes
and
T.
Stoiber
, “
Invariants of disordered semimetals via the spectral localizer
,”
Europhys. Lett.
136
,
27001
(
2021
).
2.
E.
Lozano Viesca
,
J.
Schober
, and
H.
Schulz-Baldes
, “
Chern numbers as half-signature of the spectral localizer
,”
J. Math. Phys.
60
,
072101
(
2019
).
3.
H.
Weyl
, “
Gravitation and the electron
,”
Proc. Natl. Acad. Sci. U. S. A.
15
,
323
334
(
1929
).
4.
C.
Wahl
, “
Spectral flow and winding number in von Neumann algebras
,”
J. Inst. Math. Jussieu
7
,
589
619
(
2008
).
5.
J.
Kaad
and
M.
Lesch
, “
Spectral flow and the unbounded Kasparov product
,”
Adv. Math.
248
,
495
530
(
2013
).
6.
K.
van den Dungen
, “
The index of generalised Dirac-Schrödinger operators
,”
J. Spectral Theory
9
,
1459
1506
(
2019
).
7.
Y.
Kubota
, “
The joint spectral flow and localization of the indices of elliptic operators
,”
Ann. K-Theory
1
,
43
83
(
2016
).
8.
H.
Schulz-Baldes
and
T.
Stoiber
,
Harmonic Analysis in Operator Algebras and Its Applications to Index Theory and Solid State Systems
(
Springer
,
Cham
,
2022
).
9.
J.
Robbin
and
D.
Salamon
, “
The spectral flow and the Maslov index
,”
Bull. London Math. Soc.
27
,
1
33
(
1995
).
10.
A.
Abbondandolo
and
P.
Majer
, “
Ordinary differential operators in Hilbert spaces and Fredholm pairs
,”
Math. Z.
243
,
525
562
(
2003
).
11.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
12.
J.
Bellissard
, “
Ordinary quantum Hall effect and non-commutative cohomology
,” in
Proceedings of the Bad Schandau Conference on Localization
, Teubner Texte Physics, edited by
W.
Ziesche
and
P.
Weller
(
Teubner-Verlag
,
Leipzig
,
1988
), Vol. 16.
13.
J.
Bellissard
,
A.
van Elst
, and
H.
Schulz-Baldes
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
14.
J.
Bellissard
, “
Change of the Chern number at band crossings
,” arXiv:9504030.
15.
E.
Prodan
and
H.
Schulz-Baldes
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(
Springer International
,
Cham
,
2016
).
16.
A.
Drouot
, “
Ubiquity of conical points in topological insulators
,”
J. Ec. Polytech.–Math.
8
,
507
532
(
2021
).
17.
J.
von Neumann
and
E.
Wigner
, “
Über das Verhalten von Eigemwerten bei adiabatischen Prozessen
,”
Phys. Z.
30
,
467
470
(
1929
).
18.
D.
Vanderbilt
,
Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators
(
Cambridge University Press
,
2018
).
19.
N. P.
Armitage
,
E. J.
Mele
, and
A.
Vishwanath
, “
Weyl and Dirac semimetals in three-dimensional solids
,”
Rev. Mod. Phys.
90
,
015001
(
2018
).
20.
T.
Loring
and
H.
Schulz-Baldes
, “
Finite volume calculation of K-theory invariants
,”
New York J. Math.
22
,
1111
1140
(
2017
).
21.
T.
Loring
and
H.
Schulz-Baldes
, “
The spectral localizer for even index pairings
,”
J. Noncommutative Geom.
14
,
1
23
(
2020
).
22.
N.
Doll
and
H.
Schulz-Baldes
, “
Skew localizer and Z2-flows for real index pairings
,”
Adv. Math.
392
,
108038
(
2021
).
23.
N.
Doll
and
H.
Schulz-Baldes
, “
Approximate symmetries and conservation laws in topological insulators and associated Z-invariants
,”
Ann. Phys.
419
,
168238
(
2020
).
24.
H.
Schulz-Baldes
and
T.
Stoiber
, “
The spectral localizer for semifinite spectral triples
,”
Proc. Am. Math. Soc.
149
,
121
134
(
2021
).
25.
T.
Loring
, “
Bulk spectrum and K-theory for infinite-area topological quasicrystals
,”
J. Math. Phys.
60
,
081903
(
2019
).
26.
A.
Cerjan
and
T. A.
Loring
, “
Local invariants identify topological in metals and gapless systems
,”
Phys. Rev. B
106
,
064109
(
2022
).
27.
A. L.
Carey
and
H.
Schulz-Baldes
, “
Spectral flow of monopole insertion in topological insulators
,”
Commun. Math. Phys.
370
,
895
923
(
2019
).
28.
B.
Simon
, “
Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: Asymptotic expansions
,”
Ann. I.H.P.: Phys. Theor.
38
,
295
308
(
1983
).
29.
A.
Connes
,
Noncommutative Geometry
(
Academic Press
,
San Diego
,
1994
).
30.
J. M.
Gracia-Bondía
,
J. C.
Várilly
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
(
Birkhäuser
,
Boston
,
2001
).
31.
M. F.
Atiyah
,
V. K.
Patodi
, and
I. M.
Singer
, “
Spectral asymmetry and Riemannian geometry. III
,”
Math. Proc. Cambridge Philos. Soc.
79
,
71
99
(
1976
).
32.
E.
Getzler
, “
The odd chern character in cyclic homology and spectral flow
,”
Topology
32
,
489
507
(
1993
).
33.
H. L.
Cycon
,
R.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators: With Application to Quantum Mechanics and Global Geometry
,
2nd ed.
(
Springer
,
Heidelberg
,
2009
).
34.
M. A.
Shubin
, “
Semiclassical asymptotics on covering manifolds and Morse inequalities
,”
Geom. Funct. Anal.
6
,
370
409
(
1996
).
35.
B.
Helffer
and
J.
Sjöstrand
, “
Puits multiples en mécanique semi-classique IV: Étude du complexe de Witten
,”
Commun. Partial Differ. Equations
10
,
245
340
(
1985
).
36.
B.
Helffer
and
J.
Sjöstrand
, “
Analyse semi-classique pour l’équation de Harper. II: Comportement semi-classique près d’un rationnel
,”
Mem. Soc. Math. Fr.
40
,
148
(
1990
).
37.
M.
Dimassi
and
J.
Sjöstrand
,
Spectral Asymptotics in the Semi-Classical Limit
(
Cambridge University Press
,
Cambridge
,
1999
).
38.
V.
Mathai
and
G. C.
Thiang
, “
Differential topology of semimetals
,”
Commun. Math. Phys.
355
,
561
602
(
2017
).
39.
H. B.
Nielsen
and
M.
Ninomiya
, “
The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
,”
Phys. Lett. B
130
,
389
396
(
1983
).
40.
D.
Friedan
, “
A proof of the Nielsen-Ninomiya theorem
,”
Commun. Math. Phys.
85
,
481
490
(
1982
).
41.
V.
Mathai
and
G. C.
Thiang
, “
Global topology of Weyl semimetals and Fermi arcs
,”
J. Phys. A: Math. Theor.
50
,
11LT01
(
2017
).
42.
M.
Leitner
, “
Zero field Hall effect in (2 + 1)-dimensional QED
,”
Adv. Theor. Math. Phys.
12
,
475
487
(
2008
).
43.
G.
Bal
, “
Topological invariants for interface modes
,”
Commun. Partial Differ. Equations
47
,
1636
1679
(
2022
).
44.
M. F. L.
Golterman
,
K.
Jansen
, and
D. B.
Kaplan
, “
Chern-Simons currents and chiral fermions on the lattice
,”
Phys. Lett. B
301
,
219
223
(
1993
).
45.
G.
Bal
, “
Continuous bulk and interface description of topological insulators
,”
J. Math. Phys.
60
,
081506
(
2019
).
46.
C.
Callias
, “
Axial anomalies and index theorems on open spaces
,”
Commun. Math. Phys.
62
,
213
234
(
1978
).
47.
F.
Gesztesy
and
M.
Waurick
,
The Callias Index Formula Revisited
, Lecture Notes in Mathematics (
Springer
,
Berlin
,
2016
), Vol. 2157.
48.
E.
Witten
, “
Supersymmetry and Morse theory
,”
J. Differ. Geom.
17
,
661
692
(
1982
).
49.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics I to IV
(
Academic Press
,
New York
,
1975
).
50.
H.
Schulz-Baldes
and
T.
Stoiber
, “
Callias-type operators associated to spectral triples
,”
J. Noncommutative Geom.
17
,
527
(
2023
).
51.
H.
Feng
,
W.
Li
, and
W.
Zhang
, “
A Poincaré-Hopf type formula for Chern character numbers
,”
Math. Z.
269
,
401
410
(
2011
).
52.
J.
Phillips
, “
Self-adjoint Fredholm operators and spectral flow
,”
Can. Math. Bull.
39
,
460
467
(
1996
).
53.
E.
Guentner
and
N.
Higson
, “
A note on Toeplitz operators
,”
Int. J. Math.
07
,
501
513
(
1996
).
54.
J.
Fox
and
P.
Haskell
, “
K homology and regular singular Dirac–Schrödinger operators on even-dimensional manifolds
,”
Pac. J. Math.
180
,
251
272
(
1997
).
55.
J.
Kaad
and
M.
Lesch
, “
A local global principle for regular operators in Hilbert C*-modules
,”
J. Funct. Anal.
262
,
4540
4569
(
2012
).
56.
P. F.
Baum
and
E.
van Erp
, “
K-homology and Fredholm operators I: Dirac operators
,”
J. Geom. Phys.
134
,
101
118
(
2018
).
57.
N. E.
Wegge-Olsen
,
K-Theory and C*-Algebras
(
Oxford University Press
,
Oxford
,
1993
).
58.
P. D.
Hislop
, “
Exponential decay of two-body eigenfunctions: A review
,” in Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory, Berkeley, CA, 11–13 June 1999 (University of California, Berkeley,
2000
), Vol. 4, pp.
265
288
, available at https://ejde.math.txstate.edu/conf-proc/04/h2/abstr.html.
59.
C. R.
de Oliveira
,
Intermediate Spectral Theory and Quantum Dynamics
(
Birkhäuser
,
Basel
,
2009
).
60.
B.
Helffer
and
J.
Sjöstrand
, “
Multiple wells in the semi-classical limit I
,”
Commun. Partial Differ. Equations
9
,
337
408
(
1984
).
You do not currently have access to this content.