We solve the integration problem for generalized complex manifolds, obtaining as the natural integrating object a holomorphic stack with a shifted symplectic structure; in other words, a real symplectic groupoid with a compatible complex structure is defined only up to Morita equivalence. We explain how such objects differentiate to give generalized complex manifolds, and we show that a generalized complex manifold is integrable in this sense if and only if its underlying real Poisson structure is integrable. We describe several concrete examples of these integrations. Crucial to our solution are new technical tools, which are of independent interest, namely, a reduction procedure for Lie groupoid actions on Courant algebroids, as well as certain local-to-global extension results for multiplicative forms on local Lie groupoids.

1.
Bailey
,
M.
, “
Local classification of generalized complex structures
,”
J. Differ. Geom.
95
(
1
),
1
37
(
2013
).
2.
Bursztyn
,
H.
,
Cavalcanti
,
G. R.
, and
Gualtieri
,
M.
, “
Reduction of Courant algebroids and generalized complex structures
,”
Adv. Math.
211
,
726
765
(
2007
).
3.
Bursztyn
,
H.
,
Crainic
,
M.
,
Weinstein
,
A.
, and
Zhu
,
C.
, “
Integration of twisted Dirac brackets
,”
Duke Math. J.
123
(
3
),
549
607
(
2004
).
4.
Bursztyn
,
H.
,
Ponte
,
D. I.
, and
Severa
,
P.
, “
Courant morphisms and moment maps
,”
Math. Res. Lett.
16
(
2
),
215
232
(
2009
).
5.
Calaque
,
D.
,
Pantev
,
T.
,
Toen
,
B.
,
Vaquie
,
M.
, and
Vezzosi
,
G.
, “
Shifted Poisson structures and deformation quantization
,”
J. Topol.
10
(
2
),
483
584
(
2017
).
6.
Cavalcanti
,
G. R.
and
Gualtieri
,
M.
, “
A surgery for generalized complex structures on 4-manifolds
,”
J. Differ. Geom.
76
(
1
),
35
43
(
2007
).
7.
Coste
,
A.
,
Dazord
,
P.
, and
Weinstein
,
A.
, “
Groupoides symplectiques
,”
Publ. Dep. Math.
2A
,
1
62
(
1987
).
8.
Crainic
,
M.
, “
Generalized complex structures and Lie brackets
,”
Bull. Braz. Math. Soc.
42
(
4
),
559
578
(
2011
).
9.
Crainic
,
M.
and
Fernandes
,
R. L.
, “
Integrability of Poisson brackets
,”
J. Differ. Geom.
66
(
1
),
71
137
(
2004
).
10.
Debord
,
C.
, “
Holonomy groupoids of singular foliations
,”
J. Differ. Geom.
58
(
3
),
467
500
(
2001
).
11.
Frejlich
,
P.
and
Mărcuţ
,
I.
, “
On dual pairs in Dirac geometry
,”
Math. Z.
289
(
1–2
),
171
200
(
2017
).
12.
Gualtieri
,
M.
, “
Generalized complex geometry
,” Ph.D. thesis,
University of Oxford
,
2004
, p.
1
.
13.
Gualtieri
,
M.
, “
Branes on Poisson varieties
,” in
The Many Facets of Geometry
[
Oxford University Press (OUP)
,
2010
], pp.
368
394
.
14.
Gualtieri
,
M.
, “
Generalized complex geometry
,”
Ann. Math.
174
(
1
),
75
123
(
2011
).
15.
Gualtieri
,
M.
, “
Generalized Kähler geometry
,”
Commun. Math. Phys.
331
(
1
),
297
331
(
2014
).
16.
Gualtieri
,
M.
and
Li
,
S.
, “
Symplectic groupoids of log symplectic manifolds
,”
Int. Math. Res. Not.
2014
,
3022
.
17.
Hitchin
,
N.
, “
Generalized Calabi–Yau manifolds
,”
Q. J. Math.
54
(
3
),
281
308
(
2003
).
18.
Laurent-Gengoux
,
C.
,
Stiénon
,
M.
, and
Xu
,
P.
, “
Integration of holomorphic Lie algebroids
,”
Math. Ann.
345
(
4
),
895
923
(
2009
).
19.
Li-Bland
,
D.
and
Meinrenken
,
E.
, “
Courant algebroids and Poisson geometry
,”
Int. Math. Res. Not.
2009
,
2106
.
20.
Mackenzie
,
K.
,
General Theory of Lie Groupoids and Lie Algebroids
, London Mathematical Society Lecture Note Series (
Cambridge University Press
,
2005
).
21.
Mackenzie
,
K. C. H.
and
Xu
,
P.
, “
Integration of Lie bialgebroids
,”
Topology
39
(
3
),
445
467
(
2000
).
22.
Mikami
,
K.
and
Weinstein
,
A.
, “
Moments and reduction for symplectic groupoids
,”
Publ. Res. Inst. Math. Sci.
24
(
1
),
121
140
(
1988
).
23.
Moerdijk
,
I.
and
Mrcun
,
J.
,
Introduction to Foliations and Lie Groupoids
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
2003
).
24.
Ortiz
,
C.
, “
Multiplicative Dirac structures
,”
Pac. J. Math.
266
(
2
),
329
365
(
2013
).
25.
Pantev
,
T.
,
Toën
,
B.
,
Vaquié
,
M.
, and
Vezzosi
,
G.
, “
Shifted symplectic structures
,”
Publ. Math. IHÉS
117
(
1
),
271
328
(
2013
).
26.
Radko
,
O.
and
Shlyakhtenko
,
D.
, “
Picard groups of topologically stable Poisson structures
,”
Pac. J. Math.
224
(
1
),
151
183
(
2006
).
27.
Weinstein
,
A.
, “
The local structure of Poisson manifolds
,”
J. Differ. Geom.
18
(
3
),
523
557
(
1983
).
28.
Weinstein
,
A.
, “
The integration problem for complex Lie algebroids
,” in
From Geometry to Quantum Mechanics
, Progress in Mathematics Vol. 252 (
Birkhäuser
,
Boston, MA
,
2007
), pp.
93
109
.
29.
Xu
,
P.
, “
Morita equivalence of Poisson manifolds
,”
Commun. Math. Phys.
142
(
3
),
493
509
(
1991
).
30.
Xu
,
P.
,
Morita Equivalent Symplectic Groupoids
(
Springer US
,
New York
,
1991
), pp.
291
311
.
You do not currently have access to this content.