It is a fundamental but difficult problem to characterize the set of correlations that can be obtained by performing measurements on quantum mechanical systems. The problem is particularly challenging when the preparation procedure for quantum states is assumed to comply with a given causal structure. Recently, a first completeness result for this quantum causal compatibility problem has been given based on the so-called quantum inflation technique. However, completeness was achieved by imposing additional technical constraints, such as an upper bound on the Schmidt rank of the observables. Here, we show that these complications are unnecessary in the quantum bilocal scenario, a much-studied abstract model of entanglement swapping experiments. We prove that the quantum inflation hierarchy is complete for the bilocal scenario in the commuting observable model of locality. We also give a bilocal version of an observation by Tsirelson, namely, in finite dimensions, the commuting observable model and the tensor product model of locality coincide. These results answer questions recently posed by Renou and Xu [arXiv:2210.09065v2 (2022)]. Finally, we point out that our techniques can be interpreted more generally as giving rise to a semidefinite programming hierarchy that is complete for the problem of optimizing polynomial functions in the states of operator algebras defined by generators and relations. The completeness of this polarization hierarchy follows from a quantum de Finetti theorem for states on maximal C*-tensor products.

1.
J. S.
Bell
, “
On the Einstein Podolsky Rosen paradox
,”
Phys. Phys. Fiz.
1
,
195
(
1964
).
2.
J. S.
Bell
,
Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy
(
Cambridge University Press
,
2004
).
3.
N.
Brunner
,
D.
Cavalcanti
,
S.
Pironio
,
V.
Scarani
, and
S.
Wehner
, “
Bell nonlocality
,”
Rev. Mod. Phys.
86
,
419
(
2014
).
4.
J.-W.
Pan
,
Z.-B.
Chen
,
C.-Y.
Lu
,
H.
Weinfurter
,
A.
Zeilinger
, and
M.
Żukowski
, “
Multiphoton entanglement and interferometry
,”
Rev. Mod. Phys.
84
,
777
(
2012
).
5.
A.
Acín
,
N.
Brunner
,
N.
Gisin
,
S.
Massar
,
S.
Pironio
, and
V.
Scarani
, “
Device-independent security of quantum cryptography against collective attacks
,”
Phys. Rev. Lett.
98
,
230501
(
2007
).
6.
J.
Barrett
,
L.
Hardy
, and
A.
Kent
, “
No signaling and quantum key distribution
,”
Phys. Rev. Lett.
95
,
010503
(
2005
).
7.
S.
Pironio
,
A.
Acín
,
S.
Massar
,
A. B.
de La Giroday
,
D. N.
Matsukevich
,
P.
Maunz
,
S.
Olmschenk
,
D.
Hayes
,
L.
Luo
,
T. A.
Manning
, and
C.
Monroe
, “
Random numbers certified by Bell’s theorem
,”
Nature
464
,
1021
(
2010
).
8.
J.-D.
Bancal
,
N.
Gisin
,
Y.-C.
Liang
, and
S.
Pironio
, “
Device-independent witnesses of genuine multipartite entanglement
,”
Phys. Rev. Lett.
106
,
250404
(
2011
).
9.
C.
Branciard
,
D.
Rosset
,
N.
Gisin
, and
S.
Pironio
, “
Bilocal versus nonbilocal correlations in entanglement-swapping experiments
,”
Phys. Rev. A
85
,
032119
(
2012
).
10.
D.
Rosset
,
C.
Branciard
,
T. J.
Barnea
,
G.
Pütz
,
N.
Brunner
, and
N.
Gisin
, “
Nonlinear bell inequalities tailored for quantum networks
,”
Phys. Rev. Lett.
116
,
010403
(
2016
).
11.
A.
Pozas-Kerstjens
,
N.
Gisin
, and
A.
Tavakoli
, “
Full network nonlocality
,”
Phys. Rev. Lett.
128
,
010403
(
2022
).
12.
A.
Tavakoli
,
A.
Pozas-Kerstjens
,
M.-X.
Luo
, and
M.-O.
Renou
, “
Bell nonlocality in networks
,”
Rep. Prog. Phys.
85
,
056001
(
2022
).
13.
M.
Żukowski
,
A.
Zeilinger
,
M. A.
Horne
, and
A. K.
Ekert
, “‘
Event-ready-detectors’ Bell experiment via entanglement swapping
,”
Phys. Rev. Lett.
71
,
4287
(
1993
).
14.
A.
Canabarro
,
S.
Brito
, and
R.
Chaves
, “
Machine learning nonlocal correlations
,”
Phys. Rev. Lett.
122
,
200401
(
2019
).
15.
R.
Chaves
,
C.
Majenz
, and
D.
Gross
, “
Information–theoretic implications of quantum causal structures
,”
Nat. Commun.
6
(
1
),
5766
(
2015
).
16.
A.
Pozas Kerstjens
, “
Quantum information outside quantum information
,” Ph.D. thesis Universitat Politècnica de Catalunya (
2019
), see https://upcommons.upc.edu/handle/2117/170923.
17.
A.
Pozas-Kerstjens
,
R.
Rabelo
,
Ł.
Rudnicki
,
R.
Chaves
,
D.
Cavalcanti
,
M.
Navascués
, and
A.
Acín
, “
Bounding the sets of classical and quantum correlations in networks
,”
Phys. Rev. Lett.
123
,
140503
(
2019
).
18.
M.-O.
Renou
and
X.
Xu
, “
Two convergent NPA-like hierarchies for the quantum bilocal scenario
,” arXiv:2210.09065v2 (
2022
).
19.
E.
Wolfe
,
R. W.
Spekkens
, and
T.
Fritz
, “
The inflation technique for causal inference with latent variables
,”
J. Causal Inference
7
,
20170020
(
2019
).
20.
M.
Navascués
and
E.
Wolfe
, “
The inflation technique completely solves the causal compatibility problem
,”
J. Causal Inference
8
,
70
(
2020
).
21.
E.
Wolfe
,
A.
Pozas-Kerstjens
,
M.
Grinberg
,
D.
Rosset
,
A.
Acín
, and
M.
Navascués
, “
Quantum inflation: A general approach to quantum causal compatibility
,”
Phys. Rev. X
11
,
021043
(
2021
).
22.
L. T.
Ligthart
,
M.
Gachechiladze
, and
D.
Gross
, “
A convergent inflation hierarchy for quantum causal structures
,”
Commun. Math. Phys.
(published online).
23.
M.
Navascués
,
S.
Pironio
, and
A.
Acín
, “
A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations
,”
New J. Phys.
10
,
073013
(
2008
).
24.
S.
Pironio
,
M.
Navascués
, and
A.
Acín
, “
Convergent relaxations of polynomial optimization problems with noncommuting variables
,”
SIAM J. Optim.
20
,
2157
(
2010
).
25.
G. A.
Raggio
and
R. F.
Werner
, “
Quantum statistical mechanics of general mean field systems
,”
Helv. Phys. Acta
62
,
980
(
1989
).
26.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 1: C*- and W*-Algebras. Symmetry Groups. Decomposition of States
(
Springer
,
Berlin
,
2012
).
27.
K.
Landsman
,
Foundations of Quantum Theory: From Classical Concepts to Operator Algebras
(
Springer Nature
,
2017
).
28.
V.
Moretti
,
Fundamental Mathematical Structures of Quantum Theory: Spectral Theory, Foundational Issues, Symmetries, Algebraic Formulation
(
Springer
,
2019
).
29.
B.
Blackadar
,
Operator Algebras: Theory of C*-Algebras and von Neumann Algebras
(
Springer Science & Business Media
,
Berlin
,
2006
), Vol.
122
.
30.
M.
Takesaki
,
Theory of Operator Algebras I
(
Springer Science & Business Media
,
Berlin
,
2001
), Vol.
124
.
31.
V. B.
Scholz
and
R. F.
Werner
, “
Tsirelson’s problem
,” arXiv:0812.4305 (
2008
).
32.
M.
Junge
,
M.
Navascues
,
C.
Palazuelos
,
D.
Perez-Garcia
,
V. B.
Scholz
, and
R. F.
Werner
, “
Connes’ embedding problem and Tsirelson’s problem
,”
J. Math. Phys.
52
,
012102
(
2011
).
33.
T.
Fritz
, “
Tsirelson’s problem and Kirchberg’s conjecture
,”
Rev. Math. Phys.
24
,
1250012
(
2012
).
34.
Z.
Ji
,
A.
Natarajan
,
T.
Vidick
,
J.
Wright
, and
H.
Yuen
, “
MIP*=RE
,” arXiv:2001.04383 (
2020
).
35.
R. V.
Kadison
and
J. R.
Ringrose
,
Fundamentals of the Theory of Operator Algebras
(
Oxford University Press
,
1983
), Vol.
I
.
36.
B.
Tsirelson
, “
Bell inequalities and operator algebras
” (
2007
), open problem 33 in quantum information.
37.
P.
Diaconis
and
D.
Freedman
, “
Finite exchangeable sequences
,”
Ann. Probab.
8
,
745
(
1980
).
38.
P.
Diaconis
and
D.
Freedman
, “
A dozen de Finetti-style results in search of a theory
,”
Ann. Inst. Henri Poincaré, Probab. Stat.
23
,
397
(
1987
).
39.
C. M.
Caves
,
C. A.
Fuchs
, and
R.
Schack
, “
Unknown quantum states: The quantum de Finetti representation
,”
J. Math. Phys.
43
,
4537
(
2002
).
You do not currently have access to this content.