The flat band of edge states that occur in the simple tight-binding lattice model of graphene with a zigzag edge have long been conjectured to take up a ferromagnetic configuration. In this work, we prove that, for a large class of interaction Hamiltonians that can be added to the tight-binding model, and at the first order in perturbation theory, the degeneracy of edge states is resolved in such a way that the ground state is in the maximal, spin j = N/2 representation of the spin symmetry, where N is the number of edge states.

1.
G. W.
Semenoff
, “
Condensed-matter simulation of a three-dimensional anomaly
,”
Phys. Rev. Lett.
53
(
26
),
2449
(
1984
).
2.
M.
Fujita
,
K.
Wakabayashi
,
K.
Nakada
, and
K.
Kusakabe
, “
Peculiar localized state at zigzag graphite edge
,”
J. Phys. Soc. Jpn.
65
,
1920
(
1996
).
3.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
,”
Phys. Rev. B
54
,
17954
(
1996
).
4.
Y.
Niimi
,
T.
Matsui
,
H.
Kambara
,
K.
Tagami
,
M.
Tsukada
, and
H.
Fukuyama
, “
Scanning tunnelling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges
,”
Phys. Rev. B
73
,
085421
(
2006
).
5.
Y.
Kobayashi
,
K.-I.
Fukui
,
T.
Enoki
, and
K.
Kusakabe
, “
Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy
,”
Phys. Rev. B
73
,
125415
(
2006
).
6.
Z.
Liu
,
K.
Suenaga
,
P. J. F.
Harris
, and
S.
Iijima
, “
Open and closed edges of graphene layers
,”
Phys. Rev. Lett.
102
,
015501
(
2009
).
7.
K.
Suenaga
and
M.
Koshino
, “
Atom-by-atom spectroscopy at graphene edge
,”
Nature
468
,
1088
(
2010
).
8.
J.
Jung
,
T.
Pereg-Barnea
, and
A. H.
MacDonald
, “
Theory of interedge superexchange in zigzag edge magnetism
,”
Phys. Rev. Lett.
102
,
227205
(
2009
);
[PubMed]
J.
Jung
and
A. H.
MacDonald
, “
Carrier density and magnetism in graphene zigzag nanoribbons
,”
Phys. Rev. B
79
,
235433
(
2009
).
9.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Energy gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
97
,
216803
(
2006
);
[PubMed]
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
Half-metallic graphene nanoribbons
,”
Nature
444
,
347
(
2006
).
[PubMed]
10.
T.
Hikihara
,
X.
Hu
,
H.-H.
Lin
, and
C.-Y.
Mou
, “
Ground-state properties of nanographite systems with zigzag-shaped edges
,”
Phys. Rev. B
68
,
035432
(
2003
);
S.
Dutta
,
S.
Lakshmi
, and
S. K.
Pati
, “
Electron-electron interactions on the edge states of graphene: A many-body configuration interaction study
,”
Phys. Rev. B
77
,
073412
(
2008
);
H.
Feldner
,
Z. Y.
Meng
,
A.
Honecker
,
D.
Cabra
,
S.
Wessel
, and
F. F.
Assaad
, “
Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations
,”
Phys. Rev. B
81
,
115416
(
2010
).
11.
W.
Han
,
R. K.
Kawakami
,
M.
Gmitra
, and
J.
Fabian
, “
Graphene spintronics
,”
Nat. Nanotechnol.
9
,
794
807
(
2014
).
12.
S. R.
Das
and
S.
Dutta
, “
Edge state induced spintronic properties of graphene nanoribbons: A theoretical perspective
,” in
Carbon Nanomaterial Electronics: Devices and Applications
,
Advances in Sustainability Science and Technology
, edited by
A.
Hazra
and
R.
Goswami
(
Springer
,
Singapore
,
2021
).
13.
E. H.
Lieb
, “
Two theorems on the Hubbard model
,”
Phys. Rev. Lett.
62
,
1201
(
1989
);
[PubMed]
14.
N.
Shima
and
H.
Aoki
, “
Electronic structure of super-honeycomb systems: A peculiar realization of semimetal/semiconductor classes and ferromagnetism
,”
Phys. Rev. Lett.
71
,
4389
(
1993
).
15.
M.
Vanevic
,
V. M.
Stojanovic
, and
M.
Kindermann
, “
Character of electronic states in graphene antidot lattices: Flat bands and spatial localization
,”
Phys. Rev. B
80
,
045410
(
2009
).
16.
M.
Ezawa
, “
Generation and manipulation of spin current in graphene nanodisks: Robustness against randomness and lattice defects
,”
Physica E
42
,
703
(
2010
).
17.
H.
Karimi
and
I.
Affleck
, “
Towards a rigorous proof of magnetism on the edges of graphene nanoribbons
,”
Phys. Rev. B
86
,
115446
(
2012
).
18.
Z.
Shi
and
I.
Affleck
, “
Effect of long-range interaction on graphene edge magnetism
,”
Phys. Rev. B
95
,
195420
(
2017
).
19.
M.
Raczkowski
and
F. F.
Assaad
, “
Interplay between the edge-state magnetism and long-range Coulomb interaction in zigzag graphene nanoribbons: Quantum Monte Carlo study
,”
Phys. Rev. B
96
,
115155
(
2017
).
20.
G. W.
Semenoff
, “
Chiral symmetry breaking in graphene
,”
Phys.Scr.
T146
,
014016
(
2012
).
21.
G. W.
Semenoff
and
F.
Zhou
, “
Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene
,”
J. High Energy Phys.
2011
,
37
.
22.
S.
Biswas
and
G. W.
Semenoff
, “
Massless fermions on a half-space: The curious case of 2+1-dimensions
,”
J. High Energy Phys.
2022
,
45
.
23.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
(
2009
).
24.
J.
Feldman
,
H.
Knörrer
, and
E.
Trubowitz
, “
A two dimensional Fermi liquid. Part 1: Overview
,”
Commun. Math. Phys.
247
,
1
47
(
2004
).
25.
J.
Feldman
,
H.
Knörrer
, and
E.
Trubowitz
, “
A two dimensional Fermi liquid. Part 2: Convergence
,”
Commun. Math. Phys.
247
,
49
111
(
2004
).
26.
J.
Feldman
,
H.
Knörrer
, and
E.
Trubowitz
, “
A two dimensional Fermi liquid. Part 3: The Fermi surface
,”
Commun. Math. Phys.
247
,
113
177
(
2004
).
You do not currently have access to this content.