The flat band of edge states that occur in the simple tight-binding lattice model of graphene with a zigzag edge have long been conjectured to take up a ferromagnetic configuration. In this work, we prove that, for a large class of interaction Hamiltonians that can be added to the tight-binding model, and at the first order in perturbation theory, the degeneracy of edge states is resolved in such a way that the ground state is in the maximal, spin j = N/2 representation of the spin symmetry, where N is the number of edge states.
REFERENCES
1.
G. W.
Semenoff
, “Condensed-matter simulation of a three-dimensional anomaly
,” Phys. Rev. Lett.
53
(26
), 2449
(1984
).2.
M.
Fujita
, K.
Wakabayashi
, K.
Nakada
, and K.
Kusakabe
, “Peculiar localized state at zigzag graphite edge
,” J. Phys. Soc. Jpn.
65
, 1920
(1996
).3.
K.
Nakada
, M.
Fujita
, G.
Dresselhaus
, and M. S.
Dresselhaus
, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
,” Phys. Rev. B
54
, 17954
(1996
).4.
Y.
Niimi
, T.
Matsui
, H.
Kambara
, K.
Tagami
, M.
Tsukada
, and H.
Fukuyama
, “Scanning tunnelling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges
,” Phys. Rev. B
73
, 085421
(2006
).5.
Y.
Kobayashi
, K.-I.
Fukui
, T.
Enoki
, and K.
Kusakabe
, “Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy
,” Phys. Rev. B
73
, 125415
(2006
).6.
Z.
Liu
, K.
Suenaga
, P. J. F.
Harris
, and S.
Iijima
, “Open and closed edges of graphene layers
,” Phys. Rev. Lett.
102
, 015501
(2009
).7.
K.
Suenaga
and M.
Koshino
, “Atom-by-atom spectroscopy at graphene edge
,” Nature
468
, 1088
(2010
).8.
J.
Jung
, T.
Pereg-Barnea
, and A. H.
MacDonald
, “Theory of interedge superexchange in zigzag edge magnetism
,” Phys. Rev. Lett.
102
, 227205
(2009
);
[PubMed]
J.
Jung
and A. H.
MacDonald
, “Carrier density and magnetism in graphene zigzag nanoribbons
,” Phys. Rev. B
79
, 235433
(2009
).10.
T.
Hikihara
, X.
Hu
, H.-H.
Lin
, and C.-Y.
Mou
, “Ground-state properties of nanographite systems with zigzag-shaped edges
,” Phys. Rev. B
68
, 035432
(2003
);S.
Dutta
, S.
Lakshmi
, and S. K.
Pati
, “Electron-electron interactions on the edge states of graphene: A many-body configuration interaction study
,” Phys. Rev. B
77
, 073412
(2008
);H.
Feldner
, Z. Y.
Meng
, A.
Honecker
, D.
Cabra
, S.
Wessel
, and F. F.
Assaad
, “Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations
,” Phys. Rev. B
81
, 115416
(2010
).11.
W.
Han
, R. K.
Kawakami
, M.
Gmitra
, and J.
Fabian
, “Graphene spintronics
,” Nat. Nanotechnol.
9
, 794
–807
(2014
).12.
S. R.
Das
and S.
Dutta
, “Edge state induced spintronic properties of graphene nanoribbons: A theoretical perspective
,” in Carbon Nanomaterial Electronics: Devices and Applications
, Advances in Sustainability Science and Technology
, edited by A.
Hazra
and R.
Goswami
(Springer
, Singapore
, 2021
).13.
14.
N.
Shima
and H.
Aoki
, “Electronic structure of super-honeycomb systems: A peculiar realization of semimetal/semiconductor classes and ferromagnetism
,” Phys. Rev. Lett.
71
, 4389
(1993
).15.
M.
Vanevic
, V. M.
Stojanovic
, and M.
Kindermann
, “Character of electronic states in graphene antidot lattices: Flat bands and spatial localization
,” Phys. Rev. B
80
, 045410
(2009
).16.
M.
Ezawa
, “Generation and manipulation of spin current in graphene nanodisks: Robustness against randomness and lattice defects
,” Physica E
42
, 703
(2010
).17.
H.
Karimi
and I.
Affleck
, “Towards a rigorous proof of magnetism on the edges of graphene nanoribbons
,” Phys. Rev. B
86
, 115446
(2012
).18.
Z.
Shi
and I.
Affleck
, “Effect of long-range interaction on graphene edge magnetism
,” Phys. Rev. B
95
, 195420
(2017
).19.
M.
Raczkowski
and F. F.
Assaad
, “Interplay between the edge-state magnetism and long-range Coulomb interaction in zigzag graphene nanoribbons: Quantum Monte Carlo study
,” Phys. Rev. B
96
, 115155
(2017
).20.
G. W.
Semenoff
, “Chiral symmetry breaking in graphene
,” Phys.Scr.
T146
, 014016
(2012
).21.
G. W.
Semenoff
and F.
Zhou
, “Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene
,” J. High Energy Phys.
2011
, 37
.22.
S.
Biswas
and G. W.
Semenoff
, “Massless fermions on a half-space: The curious case of 2+1-dimensions
,” J. High Energy Phys.
2022
, 45
.23.
A. H.
Castro Neto
, F.
Guinea
, N. M. R.
Peres
, K. S.
Novoselov
, and A. K.
Geim
, “The electronic properties of graphene
,” Rev. Mod. Phys.
81
, 109
(2009
).24.
J.
Feldman
, H.
Knörrer
, and E.
Trubowitz
, “A two dimensional Fermi liquid. Part 1: Overview
,” Commun. Math. Phys.
247
, 1
–47
(2004
).25.
J.
Feldman
, H.
Knörrer
, and E.
Trubowitz
, “A two dimensional Fermi liquid. Part 2: Convergence
,” Commun. Math. Phys.
247
, 49
–111
(2004
).26.
J.
Feldman
, H.
Knörrer
, and E.
Trubowitz
, “A two dimensional Fermi liquid. Part 3: The Fermi surface
,” Commun. Math. Phys.
247
, 113
–177
(2004
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.