We generalize Prodan’s construction of radially localized generalized Wannier bases [E. Prodan, J. Math. Phys. 56(11), 113511 (2015)] to gapped quantum systems without time-reversal symmetry, including, in particular, magnetic Schrödinger operators, and we prove some basic properties of such bases. We investigate whether this notion might be relevant to topological transport by considering the explicitly solvable case of the Landau operator.

1.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
(
2012
).
2.
S.
Goedecker
, “
Linear scaling electronic structure methods
,”
Rev. Mod. Phys.
71
,
1085
1111
(
1999
).
3.
D.
Ceresoli
,
T.
Thonhauser
,
D.
Vanderbilt
, and
R.
Resta
, “
Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals
,”
Phys. Rev. B
74
,
024408
(
2006
).
4.
D.
Monaco
,
G.
Panati
,
A.
Pisante
, and
S.
Teufel
, “
Optimal decay of Wannier functions in Chern and quantum Hall insulators
,”
Commun. Math. Phys.
359
,
61
(
2018
).
5.
W.
Kohn
and
J. R.
Onffroy
, “
Wannier functions in a simple nonperiodic system
,”
Phys. Rev. B
8
,
2485
(
1973
).
6.
S.
Kivelson
, “
Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons
,”
Phys. Rev. B
26
,
4269
(
1982
).
7.
A.
Nenciu
and
G.
Nenciu
, “
Existence of exponentially localized Wannier functions for nonperiodic systems
,”
Phys. Rev. B
47
,
10112
10115
(
1993
).
8.
A.
Nenciu
and
G.
Nenciu
, “
The existence of generalised Wannier functions for one-dimensional systems
,”
Commun. Math. Phys.
190
,
541
548
(
1998
).
9.
G.
Marcelli
,
M.
Moscolari
, and
G.
Panati
, “
Localization of generalized Wannier bases implies Chern triviality in non-periodic insulators
,”
Ann. Henri Poincaré
24
,
895
930
(
2023
).
10.
M.
Moscolari
, “
On the localization dichotomy for gapped quantum systems
,” Ph.D. thesis,
“La Sapienza” University of Rome
,
2018
.
11.
M.
Ludewig
and
G. C.
Thiang
, “
Good Wannier bases in Hilbert modules associated to topological insulators
,”
J. Math. Phys.
61
,
061902
(
2020
).
12.
C.
Bourne
and
B.
Mesland
, “
Localised module frames and Wannier bases from groupoid Morita equivalences
,”
J. Fourier Anal. Appl.
27
,
69
(
2021
); arXiv:2009.13806, Revised version of: Gabor frames and Wannier bases from groupoid Morita equivalence.
13.
J.
Lu
and
K.
Stubbs
, “
Algebraic localization implies exponential localization in non-periodic insulators
,” arXiv:2101.02626 (
2021
).
14.
J.
Lu
and
K.
Stubbs
, “
Algebraic localization of Wannier functions implies Chern triviality in non-periodic insulators
,” arXiv:2107.10699 (
2021
).
15.
M.
Ludewig
and
G. C.
Thiang
, “
Large-scale geometry obstructs localization
,”
J. Math. Phys.
63
,
091902
(
2022
).
16.
E.
Prodan
, “
On the generalized Wannier functions
,”
J. Math. Phys.
56
(
11
),
113511
(
2015
).
17.
G. D.
Raikov
and
S.
Warzel
, “
Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials
,”
Rev. Math. Phys.
14
,
1051
1072
(
2002
).
18.
H. D.
Cornean
,
A.
Nenciu
, and
G.
Nenciu
, “
Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators
,”
J. Phys. A: Math. Theor.
41
,
125202
(
2008
).
19.
J.
Lu
,
K. D.
Stubbs
, and
A. B.
Watson
, “
Existence and computation of generalized Wannier functions for non-periodic systems in two dimensions and higher
,”
Arch. Ration. Mech. Anal.
243
,
1269
1323
(
2022
).
20.
K. D.
Stubbs
,
A. B.
Watson
, and
J.
Lu
, “
Iterated projected position algorithm for constructing exponentially localized generalized Wannier functions for periodic and nonperiodic insulators in two dimensions and higher
,”
Phys. Rev. B
103
,
075125
(
2021
).
21.
J. M.
Barbaroux
,
J. M.
Combes
, and
P. D.
Hislop
, “
Localization near band edges for random Schrödinger operators
,”
Helv. Phys. Acta
70
,
16
43
(
1997
).
22.
J.
Avron
,
I.
Herbst
, and
B.
Simon
, “
Schrödinger operators with magnetic fields. I. General interactions
,”
Duke Math. J.
45
,
847
883
(
1978
).
23.
K.
Yoshino
, “
Eigenvalue problems of Toeplitz operators in Bargmann–Fock spaces
,” in
Generalized Functions and Fourier Analysis: Dedicated to Stevan Pilipović on the Occasion of His 65th Birthday
(
Springer International Publishing
,
2017
), pp.
269
276
.
24.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Charge deficiency, charge transport and comparison of dimensions
,”
Commun. Math. Phys.
159
,
399
422
(
1994
).
25.
G.
De Nittis
,
K.
Gomi
, and
M.
Moscolari
, “
The geometry of (non-Abelian) Landau levels
,”
J. Geom. Phys.
152
,
103649
(
2020
).
26.
S. M.
Girvin
and
T.
Jach
, “
Formalism for the quantum Hall effect: Hilbert space of analytic functions
,”
Phys. Rev. B
29
,
5617
(
1984
).
27.
M.
Moscolari
and
G.
Panati
, “
Symmetry and localization for magnetic Schrödinger operators: Landau levels, Gabor frames, and all that
,”
Acta Appl. Math.
162
(
1
),
105
(
2019
).
28.
I.
Segal
, “
Mathematical problems of relativistic physics
,” in
Proceedings of the Summer Seminar, Boulder, Colorado, 1960
, Lectures in Applied Mathematics Vol. II, edited by
M.
Kac
(
American Mathematical Society
,
Providence, RI
,
1963
), Chap. VI.
29.
V.
Bargmann
, “
On a Hilbert space of analytic functions and an associated integral transform part I
,”
Commun. Pure Appl. Math.
14
,
187
(
1961
).
30.
J. M.
Combes
and
L.
Thomas
, “
Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators
,”
Commun. Math. Phys.
34
,
251
270
(
1973
).
31.
H. D.
Cornean
and
G.
Nenciu
, “
The Faraday effect revisited: Thermodynamic limit
,”
J. Funct. Anal.
257
,
2024
2066
(
2009
).
32.
B.
Simon
, “
Schrödinger semigroups
,”
Bull. Am. Math. Soc.
7
,
447
526
(
1982
).
33.
H.
Leinfelder
and
C. G.
Simader
, “
Schrödingers operators with singular magnetic vector potentials
,”
Math. Z.
176
,
1
19
(
1981
).
34.
W. O.
Amrein
,
Hilbert Space Methods in Quantum Mechanics
(
EPFL Press
,
2009
).
35.
K.
Broderix
,
D.
Hundertmark
, and
H.
Leschke
, “
Continuity properties of Schrödinger semigroups with magnetic fields
,”
Rev. Math. Phys.
12
,
181
225
(
2000
).
You do not currently have access to this content.