This paper concerns the higher-dimensional food chain model with a general logistic source ut = Δu + u(1 − uα−1 − v − w), vt = Δv − ∇·(ξv∇u) + v(1 − vβ−1 + u − w), wt = Δw − ∇·(χw∇v) + w(1 − wγ−1 + v + u) in a smooth bounded domain Ω ⊂ Rn(n ≥ 2) with homogeneous Neumann boundary conditions. It is shown that for some conditions on the logistic degradation rates, this problem possesses a globally defined bounded classical solution.
REFERENCES
1.
P.
Kareiva
and G.
Odell
, “Swarms of predators exhibit preytaxis if individual predators use area-restricted search
,” Am. Nat.
130
, 233
–270
(1987
).2.
J. M.
Lee
, T.
Hillen
, and M. A.
Lewis
, “Pattern formation in prey-taxis systems
,” J. Biol. Dyn.
3
, 551
–573
(2009
).3.
H.-Y.
Jin
and Z.-A.
Wang
, “Global dynamics and spatio-temporal patterns of predator-prey systems with densitydependent motion
,” Eur. J. Appl. Math.
32
, 652
–682
(2021
).4.
B.
Ainseba
, M.
Bendahmane
, and A.
Noussair
, “A reaction-diffusion system modeling predator-prey with prey-taxis
,” Nonlinear Anal.: Real World Appl.
9
, 2086
–2105
(2008
).5.
X.
He
and S.
Zheng
, “Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
,” Appl. Math. Lett.
49
, 73
–77
(2015
).6.
H.-Y.
Jin
and Z.-A.
Wang
, “Global stability of prey-taxis systems
,” J. Differ. Equations
262
, 1257
–1290
(2017
).7.
Y.
Tao
, “Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis
,” Nonlinear Anal.: Real World Appl.
11
, 2056
–2064
(2010
).8.
S.
Wu
, J.
Shi
, and B.
Wu
, “Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis
,” J. Differ. Equations
260
, 5847
–5874
(2016
).9.
T.
Xiang
, “Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka–Volterra kinetics
,” Nonlinear Anal.: Real World Appl.
39
, 278
–299
(2018
).10.
I.
Ahn
and C.
Yoon
, “Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis
,” J. Differ. Equations
268
, 4222
–4255
(2020
).11.
J.
Wang
and M.
Wang
, “Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources
,” Math. Models Methods Appl. Sci.
30
, 1297
–1323
(2020
).12.
A.
Hastings
and T.
Powell
, “Chaos in a three-species food chain
,” Ecology
72
, 896
–903
(1991
).13.
A.
Klebanoff
and A.
Hastings
, “Chaos in three-species food chains
,” J. Math. Biol.
32
, 427
–451
(1994
).14.
K.
McCann
and P.
Yodzis
, “Biological conditions for chaos in a three-species food chain
,” Ecology
75
, 561
–564
(1994
).15.
K.
McCann
and P.
Yodzis
, “Bifurcation structure of a three-species food chain model
,” Theor. Popul. Biol.
48
, 93
–125
(1995
).16.
D.
Pattanayak
, A.
Mishra
, S. K.
Dana
, and N.
Bairagi
, “Bistability in a tri-trophic food chain model: Basin stability perspective
,” Chaos
31
, 073124
(2021
).17.
H.-Y.
Jin
, Z.-A.
Wang
, and L.
Wu
, “Global dynamics of a three-species spatial food chain model
,” J. Differ. Equations
333
, 144
–183
(2022
).18.
N.
Tania
, B.
Vanderlei
, J. P.
Heath
, and L.
Edelstein-Keshet
, “Role of social interactions in dunamic patterns of resource pathches and forager aggregation
,” Proc. Natl. Acad. Sci. U. S. A.
109
, 11228
–11233
(2012
).19.
Y.
Tao
and M.
Winkler
, “Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food
,” Math. Models Methods Appl. Sci.
29
, 2151
–2182
(2019
).20.
M.
Winkler
, “Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions
,” Math. Models Methods Appl. Sci.
29
, 373
–418
(2019
).21.
T.
Black
, “Global generalized solutions to a forager-exploiter model with superlinear degradation and their eventual regularity properties
,” Math. Models Methods Appl. Sci.
30
, 1075
–1117
(2020
).22.
L.
Xu
, C.
Mu
, and Q.
Xin
, “Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source
,” Discrete Contin. Dyn. Syst.
41
, 3031
–3043
(2021
).23.
J.
Wang
, “Global existence and stabilization in a forager-exploiter model with general logistic sources
,” Nonlinear Anal.
222
, 112985
(2022
).24.
E. C.
Haskell
and J.
Bell
, “A model of the burglar alarm hypothesis of prey alarm calls
,” Theor. Popul. Biol.
141
, 1
–13
(2021
).25.
M.
Winkler
, “Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
,” J. Differ. Equations
248
, 2889
–2905
(2010
).26.
H.
Amann
, “Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems
,” Differ. Integr. Equations
3
, 13
–75
(1990
).27.
Y.
Tao
and M.
Winkler
, “Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system
,” Z. Angew. Math. Phys.
66
, 2555
–2573
(2015
).28.
J.
Lankeit
and Y.
Wang
, “Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption
,” Discrete Contin. Dyn. Syst.
37
, 6099
–6121
(2017
).29.
K.
Fujie
, A.
Ito
, M.
Winkler
, and T.
Yokota
, “Stabilization in a chemotaxis model for tumor invasion
,” Discrete Contin. Dyn. Syst.
36
, 151
–169
(2016
).30.
C.
Jin
, “Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms
,” Bull. London Math. Soc.
50
, 598
–618
(2018
).31.
X.
Cao
, “Boundedness in a three-dimensional chemotaxis-haptotaxis model
,” Z. Angew. Math. Phys.
67
, 11
(2016
).32.
S.
Ishida
, K.
Seki
, and T.
Yokota
, “Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains
,” J. Differ. Equations
256
, 2993
–3010
(2014
).33.
H.-Y.
Jin
, Y.-J.
Kim
, and Z.-A.
Wang
, “Boundedness, stabilization, and pattern formation driven by density-suppressed motility
,” SIAM J. Appl. Math.
78
, 1632
–1657
(2018
).34.
J. P.
Bourguignon
and H.
Brezis
, “Remarks on Euler equation
,” J. Funct. Anal.
15
, 341
–363
(1974
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.