This paper concerns the higher-dimensional food chain model with a general logistic source ut = Δu + u(1 − uα−1vw), vt = Δv − ∇·(ξvu) + v(1 − vβ−1 + uw), wt = Δw − ∇·(χwv) + w(1 − wγ−1 + v + u) in a smooth bounded domain Ω ⊂ Rn(n ≥ 2) with homogeneous Neumann boundary conditions. It is shown that for some conditions on the logistic degradation rates, this problem possesses a globally defined bounded classical solution.

1.
P.
Kareiva
and
G.
Odell
, “
Swarms of predators exhibit preytaxis if individual predators use area-restricted search
,”
Am. Nat.
130
,
233
270
(
1987
).
2.
J. M.
Lee
,
T.
Hillen
, and
M. A.
Lewis
, “
Pattern formation in prey-taxis systems
,”
J. Biol. Dyn.
3
,
551
573
(
2009
).
3.
H.-Y.
Jin
and
Z.-A.
Wang
, “
Global dynamics and spatio-temporal patterns of predator-prey systems with densitydependent motion
,”
Eur. J. Appl. Math.
32
,
652
682
(
2021
).
4.
B.
Ainseba
,
M.
Bendahmane
, and
A.
Noussair
, “
A reaction-diffusion system modeling predator-prey with prey-taxis
,”
Nonlinear Anal.: Real World Appl.
9
,
2086
2105
(
2008
).
5.
X.
He
and
S.
Zheng
, “
Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
,”
Appl. Math. Lett.
49
,
73
77
(
2015
).
6.
H.-Y.
Jin
and
Z.-A.
Wang
, “
Global stability of prey-taxis systems
,”
J. Differ. Equations
262
,
1257
1290
(
2017
).
7.
Y.
Tao
, “
Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis
,”
Nonlinear Anal.: Real World Appl.
11
,
2056
2064
(
2010
).
8.
S.
Wu
,
J.
Shi
, and
B.
Wu
, “
Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis
,”
J. Differ. Equations
260
,
5847
5874
(
2016
).
9.
T.
Xiang
, “
Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka–Volterra kinetics
,”
Nonlinear Anal.: Real World Appl.
39
,
278
299
(
2018
).
10.
I.
Ahn
and
C.
Yoon
, “
Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis
,”
J. Differ. Equations
268
,
4222
4255
(
2020
).
11.
J.
Wang
and
M.
Wang
, “
Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources
,”
Math. Models Methods Appl. Sci.
30
,
1297
1323
(
2020
).
12.
A.
Hastings
and
T.
Powell
, “
Chaos in a three-species food chain
,”
Ecology
72
,
896
903
(
1991
).
13.
A.
Klebanoff
and
A.
Hastings
, “
Chaos in three-species food chains
,”
J. Math. Biol.
32
,
427
451
(
1994
).
14.
K.
McCann
and
P.
Yodzis
, “
Biological conditions for chaos in a three-species food chain
,”
Ecology
75
,
561
564
(
1994
).
15.
K.
McCann
and
P.
Yodzis
, “
Bifurcation structure of a three-species food chain model
,”
Theor. Popul. Biol.
48
,
93
125
(
1995
).
16.
D.
Pattanayak
,
A.
Mishra
,
S. K.
Dana
, and
N.
Bairagi
, “
Bistability in a tri-trophic food chain model: Basin stability perspective
,”
Chaos
31
,
073124
(
2021
).
17.
H.-Y.
Jin
,
Z.-A.
Wang
, and
L.
Wu
, “
Global dynamics of a three-species spatial food chain model
,”
J. Differ. Equations
333
,
144
183
(
2022
).
18.
N.
Tania
,
B.
Vanderlei
,
J. P.
Heath
, and
L.
Edelstein-Keshet
, “
Role of social interactions in dunamic patterns of resource pathches and forager aggregation
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
11228
11233
(
2012
).
19.
Y.
Tao
and
M.
Winkler
, “
Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food
,”
Math. Models Methods Appl. Sci.
29
,
2151
2182
(
2019
).
20.
M.
Winkler
, “
Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions
,”
Math. Models Methods Appl. Sci.
29
,
373
418
(
2019
).
21.
T.
Black
, “
Global generalized solutions to a forager-exploiter model with superlinear degradation and their eventual regularity properties
,”
Math. Models Methods Appl. Sci.
30
,
1075
1117
(
2020
).
22.
L.
Xu
,
C.
Mu
, and
Q.
Xin
, “
Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source
,”
Discrete Contin. Dyn. Syst.
41
,
3031
3043
(
2021
).
23.
J.
Wang
, “
Global existence and stabilization in a forager-exploiter model with general logistic sources
,”
Nonlinear Anal.
222
,
112985
(
2022
).
24.
E. C.
Haskell
and
J.
Bell
, “
A model of the burglar alarm hypothesis of prey alarm calls
,”
Theor. Popul. Biol.
141
,
1
13
(
2021
).
25.
M.
Winkler
, “
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
,”
J. Differ. Equations
248
,
2889
2905
(
2010
).
26.
H.
Amann
, “
Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems
,”
Differ. Integr. Equations
3
,
13
75
(
1990
).
27.
Y.
Tao
and
M.
Winkler
, “
Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system
,”
Z. Angew. Math. Phys.
66
,
2555
2573
(
2015
).
28.
J.
Lankeit
and
Y.
Wang
, “
Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption
,”
Discrete Contin. Dyn. Syst.
37
,
6099
6121
(
2017
).
29.
K.
Fujie
,
A.
Ito
,
M.
Winkler
, and
T.
Yokota
, “
Stabilization in a chemotaxis model for tumor invasion
,”
Discrete Contin. Dyn. Syst.
36
,
151
169
(
2016
).
30.
C.
Jin
, “
Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms
,”
Bull. London Math. Soc.
50
,
598
618
(
2018
).
31.
X.
Cao
, “
Boundedness in a three-dimensional chemotaxis-haptotaxis model
,”
Z. Angew. Math. Phys.
67
,
11
(
2016
).
32.
S.
Ishida
,
K.
Seki
, and
T.
Yokota
, “
Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains
,”
J. Differ. Equations
256
,
2993
3010
(
2014
).
33.
H.-Y.
Jin
,
Y.-J.
Kim
, and
Z.-A.
Wang
, “
Boundedness, stabilization, and pattern formation driven by density-suppressed motility
,”
SIAM J. Appl. Math.
78
,
1632
1657
(
2018
).
34.
J. P.
Bourguignon
and
H.
Brezis
, “
Remarks on Euler equation
,”
J. Funct. Anal.
15
,
341
363
(
1974
).
You do not currently have access to this content.