In this paper, we develop an asymptotic-preserving and energy-conserving (APEC) Particle-In-Cell (PIC) algorithm for the Vlasov–Maxwell system. This algorithm not only guarantees that the asymptotic limiting of the discrete scheme is a consistent and stable discretization of the quasi-neutral limit of the continuous model but also preserves Gauss’s law and energy conservation at the same time; therefore, it is promising to provide stable simulations of complex plasma systems even in the quasi-neutral regime. The key ingredients for achieving these properties include the generalization of Ohm’s law for electric fields such that asymptotic-preserving discretization can be achieved and a proper decomposition of the effects of the electromagnetic fields such that a Lagrange multiplier method can be appropriately employed for correcting the kinetic energy. We investigate the performance of the APEC method with three benchmark tests in one dimension, including the linear Landau damping, the bump-on-tail problem, and the two-stream instability. Detailed comparisons are conducted by including the results from the classical explicit leapfrog and the previously developed asymptotic-preserving PIC schemes. Our numerical experiments show that the proposed APEC scheme can give accurate and stable simulations of both kinetic and quasi-neutral regimes, demonstrating the attractive properties of the method across scales.

1.
Ameres
,
J.
, “
Stochastic and spectral particle methods for plasma physics
,” Ph.D. thesis,
Technical University of Munich
,
Munich, Germany
,
2018
.
2.
Antoine
,
X.
,
Shen
,
J.
, and
Tang
,
Q.
, “
Scalar auxiliary variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations
,”
J. Comput. Phys.
437
,
110328
(
2021
).
3.
Barthelmé
,
R.
,
Ciarlet
, Jr.,
P.
, and
Sonnendrücker
,
E.
, “
Generalized formulations of Maxwell’s equations for numerical Vlasov–Maxwell simulations
,”
Math. Models Methods Appl. Sci.
17
(
05
),
657
680
(
2007
).
4.
Belaouar
,
R.
,
Crouseilles
,
N.
,
Degond
,
P.
, and
Sonnendrücker
,
E.
, “
An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit
,”
J. Sci. Comput.
41
(
3
),
341
365
(
2009
).
5.
Birdsall
,
C. K.
and
Langdon
,
A. B.
,
Plasma Physics via Computer Simulation
(
CRC Press
,
Boca Raton
,
2004
).
6.
Biskamp
,
D.
,
Nonlinear Magnetohydrodynamics
(
Cambridge University Press
,
Cambridge
,
1997
).
7.
Boris
,
J. P.
, “
Relativistic plasma simulation-optimization of a hybrid code
,” in
Proceedings: Fourth Conference on Numerical Simulation of Plasmas
(
Naval Research Laboratory
,
1970
), pp.
3
67
.
8.
Bourgat
,
J.-F.
,
Le Tallec
,
P.
,
Perthame
,
B.
, and
Qiu
,
Y.
, “
Coupling Boltzmann and Euler equations without overlapping
,”
Contemp. Math.
157
,
377
(
1994
).
9.
Büchner
,
J.
,
Dum
,
C. T.
, and
Scholer
,
M.
,
Space Plasma Simulation
(
Springer
,
Berlin, Heidelberg
,
2003
).
10.
Chen
,
F. F.
,
Introduction to Plasma Physics and Controlled Fusion
(
Springer
,
Cham
,
1984
).
11.
Chen
,
G.
,
Chacón
,
L.
, and
Barnes
,
D. C.
, “
An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm
,”
J. Comput. Phys.
230
(
18
),
7018
7036
(
2011
).
12.
Chen
,
G.
,
Chacón
,
L.
,
Yin
,
L.
,
Albright
,
B. J.
,
Stark
,
D. J.
, and
Bird
,
R. F.
, “
A semi-implicit, energy- and charge-conserving particle-in-cell algorithm for the relativistic Vlasov-Maxwell equations
,”
J. Comput. Phys.
407
,
109228
(
2020
).
13.
Cheng
,
Y.
,
Christlieb
,
A. J.
, and
Zhong
,
X.
, “
Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system
,”
J. Comput. Phys.
256
(
1
),
630
655
(
2014
).
14.
Cheng
,
Y.
,
Christlieb
,
A. J.
, and
Zhong
,
X.
, “
Numerical study of the two-species Vlasov–Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability
,”
J. Comput. Phys.
288
,
66
85
(
2015
).
15.
Copplestone
,
S. M.
,
Pfeiffer
,
M.
,
Fasoulas
,
S.
, and
Munz
,
C.-D.
, “
High-order Particle-In-Cell simulations of laser-plasma interaction
,”
Eur. Phys. J.: Spec. Top.
227
(
14
),
1603
1614
(
2019
).
16.
Cordier
,
F.
,
Degond
,
P.
, and
Kumbaro
,
A.
, “
An Asymptotic-Preserving all-speed scheme for the Euler and Navier–Stokes equations
,”
J. Comput. Phys.
231
(
17
),
5685
5704
(
2012
).
17.
Crouseilles
,
N.
,
Einkemmer
,
L.
, and
Faou
,
E.
, “
Hamiltonian splitting for the Vlasov–Maxwell equations
,”
J. Comput. Phys.
283
,
224
240
(
2015
).
18.
Dawson
,
J.
, “
One dimensional plasma model
,”
Phys. Fluids
5
(
4
),
445
459
(
1962
).
19.
Dawson
,
J. M.
, “
Particle simulation of plasmas
,”
Rev. Mod. Phys.
55
(
2
),
403
(
1983
).
20.
Degond
,
P.
and
Deluzet
,
F.
, “
Asymptotic-preserving methods and multiscale models for plasma physics
,”
J. Comput. Phys.
336
,
429
457
(
2017
).
21.
Degond
,
P.
,
Deluzet
,
F.
, and
Doyen
,
D.
, “
Asymptotic-Preserving Particle-In-Cell methods for the Vlasov–Maxwell system in the quasi-neutral limit
,”
J. Comput. Phys.
330
,
467
492
(
2017
).
22.
Degond
,
P.
,
Deluzet
,
F.
,
Navoret
,
L.
,
Sun
,
A.-B.
, and
Vignal
,
M.-H.
, “
Asymptotic-Preserving Particle-In-Cell method for the Vlasov–Poisson system near quasineutrality
,”
J. Comput. Phys.
229
(
16
),
5630
5652
(
2010
).
23.
Degond
,
P.
,
Deluzet
,
F.
, and
Savelief
,
D.
, “
Numerical approximation of the Euler–Maxwell model in the quasineutral limit
,”
J. Comput. Phys.
231
(
4
),
1917
1946
(
2012
).
24.
Degond
,
P.
,
Liu
,
H.
,
Savelief
,
D.
, and
Vignal
,
M.-H.
, “
Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit
,”
J. Comput. Phys.
51
(
1
),
59
86
(
2012
).
25.
Derouillat
,
J.
,
Beck
,
A.
,
Pérez
,
F.
,
Vinci
,
T.
,
Chiaramello
,
M.
,
Grassi
,
A.
,
Flé
,
M.
,
Bouchard
,
G.
,
Plotnikov
,
I.
,
Aunai
,
N.
et al, “
Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation
,”
Comput. Phys. Commun.
222
,
351
373
(
2017
).
26.
Evstatiev
,
E. G.
and
Shadwick
,
B. A.
, “
Variational formulation of particle algorithms for kinetic plasma simulations
,”
J. Comput. Phys.
245
,
376
398
(
2013
).
27.
Goedbloed
,
J. P. H.
and
Poedts
,
S.
,
Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas
(
Cambridge University Press
,
Cambridge
,
2004
).
28.
Golse
,
F.
and
Saint-Raymond
,
L.
, “
The Vlasov–Poisson system with strong magnetic field in quasineutral regime
,”
Math. Models Methods Appl. Sci.
13
(
05
),
661
714
(
2003
).
29.
Ho
,
A.
,
Datta
,
I. A. M.
, and
Shumlak
,
U.
, “
Physics-based-adaptive plasma model for high-fidelity numerical simulations
,”
Front. Phys.
6
,
105
(
2018
).
30.
Hockney
,
R. W.
and
Eastwood
,
J. W.
,
Computer Simulation Using Particles
(
CRC Press
,
Boca Raton
,
1988
).
31.
Jacobs
,
G. B.
and
Hesthaven
,
J. S.
, “
High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids
,”
J. Comput. Phys.
214
(
1
),
96
121
(
2006
).
32.
Jin
,
S.
, “
Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations
,”
SIAM J. Sci. Comput.
21
(
2
),
441
454
(
1999
).
33.
Jin
,
S.
, “
Asymptotic-preserving schemes for multiscale physical problems
,”
Acta Numer.
31
,
415
489
(
2022
).
34.
Koshkarov
,
O.
,
Manzini
,
G.
,
Delzanno
,
G. L.
,
Pagliantini
,
C.
, and
Roytershteyn
,
V.
, “
The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov–Maxwell equations
,”
Comput. Phys. Commun.
264
,
107866
(
2021
).
35.
Langdon
,
A. B.
,
Cohen
,
B. I.
, and
Friedman
,
A.
, “
Direct implicit large time-step particle simulation of plasmas
,”
J. Comput. Phys.
51
(
1
),
107
138
(
1983
).
36.
Langdon
,
A. B.
, “
On enforcing Gauss’ law in electromagnetic particle-in-cell codes
,”
Comput. Phys. Commun.
70
(
3
),
447
450
(
1992
).
37.
Lapenta
,
G.
, “
Kinetic plasma simulation: Particle in cell method
,” in
XII Carolus Magnus Summer School on Plasma and Fusion Energy Physics
(
2015
), pp.
76
85
.
38.
Lapenta
,
G.
and
Markidis
,
S.
, “
Particle acceleration and energy conservation in particle in cell simulations
,”
Phys. Plasmas
18
(
7
),
072101
(
2011
).
39.
Legeza
,
O.
,
Noack
,
R. M.
,
Solyom
,
J.
, and
Tincani
,
L.
,
Computational Many-Particle Physics
(
Springer
,
Heidelberg
,
2008
).
40.
Lewis
,
H. R.
, “
Energy-conserving numerical approximations for Vlasov plasmas
,”
J. Comput. Phys.
6
(
1
),
136
141
(
1970
).
41.
Morrison
,
P. J.
, “
The Maxwell-Vlasov equations as a continuous Hamiltonian system
,”
Phys. Lett. A
80
(
5–6
),
383
386
(
1980
).
42.
O’Connor
,
S.
,
Crawford
,
Z. D.
,
Ramachandran
,
O. H.
,
Luginsland
,
J.
, and
Shanker
,
B.
, “
Quasi-Helmholtz decomposition, Gauss’ laws and charge conservation for finite element particle-in-cell
,”
Comput. Phys. Commun.
276
,
108345
(
2022
).
43.
Peng
,
Y.
, “
Asymptotic limits of one-dimensional hydrodynamic models for plasmas and semiconductors
,”
Chin. Ann. Math.
23
(
01
),
25
36
(
2002
).
44.
Pfeiffer
,
M.
,
Hindenlang
,
F.
,
Binder
,
T.
,
Copplestone
,
S. M.
,
Munz
,
C.-D.
, and
Fasoulas
,
S.
, “
A Particle-in-Cell solver based on a high-order hybridizable discontinuous Galerkin spectral element method on unstructured curved meshes
,”
Comput. Methods Appl. Mech. Eng.
349
(
1
),
149
166
(
2019
).
45.
Shiroto
,
T.
,
Matsuyama
,
A.
, and
Yagi
,
M.
, “
A charge-momentum-energy-conserving 1D3V hybrid Lagrangian–Eulerian method for Vlasov–Maxwell system
,”
J. Comput. Phys.
469
,
111522
(
2022
).
46.
Song
,
H. H.
,
Wang
,
W. M.
,
Wang
,
J. Q.
,
Li
,
Y. T.
, and
Zhang
,
J.
, “
Low-frequency whistler waves excited by relativistic laser pulses
,”
Phys. Rev. E
102
(
5
),
053204
(
2020
).
47.
Stix
,
T. H.
,
Waves in Plasmas
(
American Institute of Physics
,
Melville, NY
,
1992
).
48.
Taflove
,
A.
,
Computation Electrodynamics: The Finite-Difference Time-Domain Method
(
Artech House
,
1995
).
49.
Tang
,
M.
, “
Second order all speed method for the isentropic Euler equations
,”
Kinet. Relat. Models
5
(
1
),
155
184
(
2013
).
50.
Umeda
,
T.
,
Togano
,
K.
, and
Ogino
,
T.
, “
Two-dimensional full-electromagnetic Vlasov code with conservative scheme and its application to magnetic reconnection
,”
Comput. Phys. Commun.
180
(
3
),
365
374
(
2009
).
51.
Villasenor
,
J.
and
Buneman
,
O.
, “
Rigorous charge conservation for local electromagnetic field solvers
,”
Comput. Phys. Commun.
69
(
2–3
),
306
316
(
1992
).
52.
Zhang
,
J.
,
Wang
,
W. M.
,
Yang
,
X. H.
,
Wu
,
D.
,
Ma
,
Y. Y.
,
Jiao
,
J. L.
,
Zhang
,
Z.
,
Wu
,
F. Y.
,
Yuan
,
X. H.
,
Li
,
Y. T.
, and
Zhu
,
J. Q.
, “
Double-cone ignition scheme for inertial confinement fusion
,”
Philos. Trans. R. Soc., A
378
(
2184
),
20200015
(
2020
).
You do not currently have access to this content.