This paper considers the possible emergence of traveling waves within an evolving interstellar gas cloud. To model this evolution, we use Euler–Poisson equations with the additional assumptions that the gas is incompressible, stratified, and self-gravitating. Within this framework, we establish that when the cloud has low density, the speed of these traveling waves is low. We suggest that the self-gravitational coalescence of embedded solid matter in the gas to form larger aggregates, such as cometary nuclei, may occur in the vicinity of wave crests where the mass density is highest. This idea is consistent with the widely agreed mechanism for planetary formation in proto-planetary disks, namely, that the accumulation of solids to form larger planetoids is initiated at the location of pressure maxima in the gas disk.

1.
P.
Goldreich
and
W. R.
Ward
, “
The formation of planetesimals
,”
Astrophys. J.
183
,
1051
1061
(
1973
).
2.
D.
ter Haar
, “
Further studies of the origin of the solar system
,”
Astrophys. J.
111
,
179
190
(
1950
).
3.
J. N.
Cuzzi
,
A. R.
Dobrovolskis
, and
J. M.
Champney
, “
Particle-gas dynamics in the midplane of a protoplanetary nebula
,”
Icarus
106
,
102
134
(
1993
).
4.
E. W.
Thommes
,
M. J.
Duncan
, and
H. F.
Levison
, “
Oligarchic growth of giant planets
,”
Icarus
161
,
431
455
(
2003
).
5.
C. C.
Lin
, “
Dynamics of self-gravitating systems
,”
SIAM Rev.
11
(
2
),
127
151
(
1969
).
6.
J. J.
Lissauer
, “
Timescales for planetary accretion and the structure of the protoplanetary disk
,”
Icarus
69
,
249
265
(
1987
).
7.
J. J.
Lissauer
, “
Planet formation
,”
Annu. Rev. Astron. Astrophys.
31
,
129
174
(
1993
).
8.
A.
Johansen
,
J. S.
Oishi
,
M.-M. M.
Low
,
H.
Klahr
,
T.
Henning
, and
A.
Youdin
, “
Rapid planetesimal formation in turbulent circumstellar disks
,”
Nature
448
,
1022
1025
(
2007
).
9.
F. L.
Whipple
, “
On certain aerodynamic processes for asteroids and comets
,” in
From Plasma to Planet
, edited by
A.
Elvius
(
Wiley Interscience
,
New York
,
1972
), pp.
211
232
.
10.
P. S.
de Laplace
,
Exposition du Systéme du Monde
(
Courcier
,
Paris
,
1796
), pp.
387
397
.
11.
A. J. R.
Prentice
, “
Towards a modern Laplacian theory for the formation of the solar system
,”
Moon Planets
19
,
341
398
(
1978
).
12.
A. J. R.
Prentice
, “
Accretion of planetesimals within a gaseous ring
,”
Aust. J. Phys.
33
,
623
637
(
1980
).
13.
A. J. R.
Prentice
and
C. P.
Dyt
, “
A numerical simulation of supersonic turbulent convection relating to the formation of the Solar system
,”
Mon. Not. R. Astron. Soc.
341
(
2
),
644
656
(
2003
).
14.
A. J. R.
Prentice
, “
Gravitational settling of condensate grains in protosolar gas rings of non-uniform specific angular momentum
,”
Am. Astron. Soc., DPS Meet.
50
,
113.03
(
2018
).
15.
M.
Humi
, “
On the evolution of a primordial interstellar gas cloud
,”
J. Math. Phys.
61
,
093504
(
2020
).
16.
V. S.
Beskin
, “
Axisymmetric stationary flows in compact astrophysical objects
,”
Phys.-Usp.
40
,
659
688
(
1997
).
17.
M.
Humi
, “
Steady States of self gravitating incompressible fluid
,”
J. Math. Phys.
47
,
093101
(
2006
).
18.
M.
Humi
, “
Steady states of self gravitating incompressible fluid with axial symmetry
,”
Int. J. Mod. Phys. A
24
,
4287
4303
(
2009
).
19.
J.-L.
Tassoul
,
Theory of Rotating Stars
(
Princeton University Press
,
Princeton, NJ
,
1978
).
20.
C.-S.
Yih
,
Stratified Flows
(
Academic Press
,
New York, NY
,
1980
).
You do not currently have access to this content.