Proofs of localization for random Schrödinger operators with sufficiently regular distribution of the potential can take advantage of the fractional moment method introduced by Aizenman–Molchanov [Commun. Math. Phys. 157(2), 245–278 (1993)] or use the classical Wegner estimate as part of another method, e.g., the multi-scale analysis introduced by Fröhlich–Spencer [Commun. Math. Phys. 88, 151–184 (1983)] and significantly developed by Klein and his collaborators. When the potential distribution is singular, most proofs rely crucially on exponential estimates of events corresponding to finite truncations of the operator in question; these estimates in some sense substitute for the classical Wegner estimate. We introduce a method to “lift” such estimates, which have been obtained for many stationary models, to certain closely related non-stationary models. As an application, we use this method to derive Anderson localization on the 1D lattice for certain non-stationary potentials along the lines of the non-perturbative approach developed by Jitomirskaya–Zhu [Commun. Math. Physics 370, 311–324 (2019)] in 2019.

1.
R.
Carmona
,
A.
Klein
, and
F.
Martinelli
, “
Anderson localization for Bernoulli and other singular potentials
,”
Commun. Math. Phys.
108
(
1
),
41
66
(
1987
).
2.
C.
Shubin
,
R.
Vakilian
, and
T.
Wolff
, “
Some harmonic analysis questions suggested by Anderson-Bernoulli models
,”
Geom. Funct. Anal.
8
(
5
),
932
964
(
1998
).
3.
V.
Bucaj
,
D.
Damanik
,
J.
Fillman
,
V.
Gerbuz
,
T.
Vandenboom
,
F.
Wang
, and
Z.
Zhang
, “
Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent
,”
Trans. Am. Math. Soc.
372
,
3619
(
2019
).
4.
A.
Gorodetski
and
V.
Kleptsyn
, “
Parametric Furstenberg theorem on random products of SL(2,R) matrices
,”
Adv. Math.
378
,
107522
(
2021
).
5.
S.
Jitomirskaya
and
X.
Zhu
, “
Large deviations of the Lyapunov exponent and localization for the 1D Anderson model
,”
Commun. Math. Phys.
370
,
311
324
(
2019
).
6.
J.
Ding
and
C. K.
Smart
, “
Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice
,”
Invent. Math.
219
(
2
),
467
506
(
2020
).
7.
J.
Bourgain
and
C. E.
Kenig
, “
On localization in the continuous Anderson-Bernoulli model in higher dimension
,”
Invent. Math.
161
(
2
),
389
426
(
2005
).
8.
F.
Germinet
and
A.
Klein
, “
Bootstrap multiscale analysis and localization in random media
,”
Commun. Math. Phys.
222
(
2
),
415
448
(
2001
).
9.
L.
Li
, “
Anderson-Bernoulli localization at large disorder on the 2D lattice
,”
Commun. Math. Phys
393
(
1
),
151
214
(
2020
).
10.
L.
Li
and
L.
Zhang
, “
Anderson-Bernoulli Localization on the 3D lattice and discrete unique continuation principle
,”
Duke Math. J.
171
(
2
),
327
415
(
2019
).
11.
J.
Bourgain
and
M.
Goldstein
, “
On nonperturbative localization with quasi-periodic potential
,”
Ann. Math.
152
(
3
),
835
879
(
2000
).
12.
J.
Bourgain
,
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
,
Annals of Mathematics Studies
(
Princeton University Press
,
Princeton, NJ
,
2005
), No. 158. Includes bibliographical references.
13.
S.
Jitomirskaya
,
W.
Liu
, and
Y.
Shi
, “
Anderson localization for multi-frequency Schrödinger operators on Zd
,”
Geom. Funct. Anal.
30
(
2
),
457
481
(
2020
).
14.
W.
Liu
, “
Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices
,”
Anal. PDE
15
(
8
),
2061
2108
(
2023
).
15.
E.
Le Page
, “
Theoremes limites pour les produits de matrices aleatoires
,” in
Probability Measures on Groups
, edited by
H.
Heyer
(
Springer
,
Berlin, Heidelberg
,
1982
), pp.
258
303
.
16.
P.
Dupuis
and
R. S.
Ellis
,
A Weak Convergence Approach to the Theory of Large Deviations
.
Wiley Series in Probability and Statistics
(
Wiley-Interscience
,
1997
).
17.
N.
Rangamani
, “
Singular-unbounded random Jacobi matrices
,”
J. Math. Phys.
60
(
8
),
081904
(
2019
).
18.
A.
Gorodetski
and
V.
Kleptsyn
, “
Non-stationary version of Furstenberg theorem on random matrix products
,”
Adv. Math.
378
,
107522
(
2022
).
19.
I.
Goldsheid
, “
Exponential growth of products of non-stationary Markov-dependent matrices
,”
Int. Math. Res. Not.
2022
(
8
),
6310
6346
.
20.
W.
Craig
and
B.
Simon
, “
Subharmonicity of the Lyaponov index
,”
Duke Math. J.
50
(
2
),
551
560
(
1983
).
21.
M.
Aizenman
and
S.
Molchanov
, “
Localization at large disorder and at extreme energies: An elementary derivations
,”
Commun. Math. Phys.
157
(
2
),
245
278
(
1993
).
22.
H.
Kunz
and
B.
Souillard
, “
Sur le spectre des opérateurs aux différences finies aléatoires
,”
Commun. Math. Phys.
78
(
2
),
201
246
(
1980
).
23.
A.
Klein
, “
Unique continuation principle for spectral projections of Schrödinger operators and optimal Wegner estimates for non-ergodic random Schrödinger operators
,”
Commun. Math. Phys.
323
(
3
),
1229
1246
(
2013
).
24.
J.
Bourgain
and
A.
Klein
, “
Bounds on the density of states for Schrödinger operators
,”
Invent. Math.
194
(
1
),
41
72
(
2013
).
25.
S.
Jitomirskaya
,
H.
Schulz-Baldes
, and
G.
Stolz
, “
Delocalization in random polymer models
,”
Commun. Math. Phys.
233
(
1
),
27
48
(
2003
).
26.
N.
Rangamani
, “
Exponential dynamical localization for random word models
,”
Ann. Henri Poincare
23
(
12
),
4171
4193
(
2022
).
27.
A.
Cai
,
P.
Duarte
, and
S.
Klein
, “
Furstenberg theory of mixed random-quasiperiodic cocycles
,” arXiv:2201.04745 (
2022
).
28.
D.
Damanik
,
J.
Fillman
, and
P.
Gohlke
, “
Spectral characteristics of Schrödinger operators generated by product systems
,”
J. Spectr. Theory
12
(
4
),
1659
1718
(
2022
).
29.
A.
Elgart
and
A.
Klein
, “
Ground state energy of trimmed discrete Schrödinger operators and localization for trimmed Anderson models
,”
J. Spectral Theory
4
(
2
),
391
419
(
2014
).
30.
A.
Elgart
and
S.
Sodin
, “
The trimmed Anderson model at strong disorder: Localisation and its breakup
,”
J. Spectral Theory
7
(
1
),
87
110
(
2017
).
31.
R.
Durrett
,
Probability: Theory and Examples
,
5th ed.
,
Cambridge Series in Statistical and Probabilistic Mathematics
(
Cambridge University Press
,
2019
).
32.
H. L.
Cycon
,
R. G.
Froese
,
B.
Simon
, and
W.
Kirsch
,
Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry
,
Springer Study Edition
(
Springer
,
1987
).
33.
J.
Fröhlich
and
T.
Spencer
, “
Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,”
Commun. Math. Phys.
88
,
151
184
(
1983
).
34.
J.
Tsay
, “
Some uniform estimates in products of random matrices
,”
Taiwan. J. Math.
3
(
3
),
291
302
(
1999
).
35.
H.
Furstenberg
and
Y.
Kifer
, “
Random matrix products and measures on projective spaces
,”
Isr. J. Math.
46
(
1
),
12
32
(
1983
).
36.
S. Y.
Jitomirskaya
, “
Metal-insulator transition for the almost Mathieu operator
,”
Ann. Math.
150
(
3
),
1159
1175
(
1999
).
You do not currently have access to this content.