Dyson’s model in infinite dimensions is a system of Brownian particles that interact via a logarithmic potential with an inverse temperature of β = 2. The stochastic process can be represented by the solution to an infinite-dimensional stochastic differential equation. The associated unlabeled dynamics (diffusion process) are given by the Dirichlet form with the sine2 point process as a reference measure. In a previous study, we proved that Dyson’s model in infinite dimensions is irreducible, but left the ergodicity of the unlabeled dynamics as an open problem. In this paper, we prove that the unlabeled dynamics of Dyson’s model in infinite dimensions are ergodic.

1.
F. J.
Dyson
, “
A Brownian-motion model for the eigenvalues of a random matrix
,”
J. Math. Phys.
3
,
1191
1198
(
1962
).
2.
M. L.
Mehta
,
Random Matrices
,
3rd ed.
(
Elsevier
,
Amsterdam
,
2004
).
3.
H.
Spohn
, “
Interacting Brownian particles: A study of Dyson’s model
,” in
Hydrodynamic Behavior and Interacting Particle Systems
, IMA Volumes in Mathematics and its Applications Vol. 9, edited by
G.
Papanicolaou
(
Springer-Verlag
,
Berlin
,
1987
), pp.
151
179
.
4.
H.
Spohn
, “
Tracer dynamics in Dyson’s model of interacting Brownian particles
,”
J. Stat. Phys.
47
,
669
679
(
1987
).
5.
H.
Osada
, “
Infinite-dimensional stochastic differential equations related to random matrices
,”
Probab. Theory Relat. Fields
153
,
471
509
(
2012
).
6.
H.
Osada
, “
Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions
,”
Commun. Math. Phys.
176
,
117
131
(
1996
).
7.
H.
Osada
, “
Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials
,”
Ann. Probab.
41
,
1
49
(
2013
).
8.
B.
Valkó
and
B.
Virág
, “
Continuum limits of random matrices and the Brownian carousel
,”
Invent. Math.
177
,
463
508
(
2009
).
9.
H.
Osada
, “
Tagged particle processes and their non-explosion criteria
,”
J. Math. Soc. Jpn.
62
(
3
),
867
894
(
2010
).
10.
H.
Osada
, “
Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: Airy random point field
,”
Stochastic Process. Appl.
123
,
813
838
(
2013
).
11.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
,
2nd ed.
(
North-Holland
,
1989
).
12.
H.
Osada
and
H.
Tanemura
, “
Infinite-dimensional stochastic differential equations and tail σ-fields
,”
Probab. Theory Relat. Fields
177
,
1137
1242
(
2020
).
13.
L.-C.
Tsai
, “
Infinite dimensional stochastic differential equations for Dyson’s model
,”
Probab. Theory Relat. Fields
166
,
801
850
(
2016
).
14.
Y.
Kawamoto
,
H.
Osada
, and
H.
Tanemura
, “
Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions
,”
Potential Anal.
55
,
639
676
(
2021
).
15.
Y.
Kawamoto
,
H.
Osada
, and
H.
Tanemura
, “
Infinite-dimensional stochastic differential equations and tail σ-fields II: The IFC condition
,”
J. Math. Soc. Jpn.
74
,
79
128
(
2022
).
16.
Y.
Kawamoto
and
H.
Osada
, “
Finite particle approximations of interacting Brownian particles with logarithmic potentials
,”
J. Math. Soc. Jpn.
70
(
3
),
921
952
(
2018
).
17.
Y.
Kawamoto
and
H.
Osada
, “
Dynamical bulk scaling limit of Gaussian unitary ensembles and stochastic differential equation gaps
,”
J. Theor. Probab.
32
,
907
933
(
2019
).
18.
Y.
Kawamoto
and
H.
Osada
, “
Dynamical universality for random matrices
,”
Partial Differ. Equations Appl.
3
,
27
(
2022
).
19.
H.
Osada
and
R.
Tsuboi
, “
Dyson’s model in infinite dimensions is irreducible
,” in Dirichlet Frms and Related Topics, (
Springer
,
Singapore
,
2022
), Vol.
394
, pp.
401
419
.
20.
H.
Osada
, “
Non-collision and collision properties of Dyson’s model in infinite dimensions and other stochastic dynamics whose equilibrium states are determinantal random point fields
,” in
Stochastic Analysis on Large Scale Interacting Systems
, Advanced Studies in Pure Mathematics Vol. 39, edited by
T.
Funaki
and
H.
Osada
(
Math. Soc. Japan
,
Tokyo
,
2004
), pp.
325
343
.
21.
R.
Lang
, “
Unendlich-dimensionale Wienerprozesse mit wechselwirkung I
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
38
,
55
72
(
1977
).
22.
R.
Lang
, “
Unendlich-dimensionale Wienerprocesse mit wechselwirkung II
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
39
,
277
299
(
1977
).
23.
J.
Fritz
, “
Gradient dynamics of infinite point systems
,”
Ann. Probab.
15
,
478
514
(
1987
).
24.
H.
Tanemura
, “
A system of infinitely many mutually reflecting Brownian balls in Rd
,”
Probab. Theory Relat. Fields
104
,
399
426
(
1996
).
25.
M.
Fradon
,
S.
Roelly
, and
H.
Tanemura
, “
An infinite system of Brownian balls with infinite range interaction
,”
Stochastic Process. Appl.
90
(
1
),
43
66
(
2000
).
26.
R.
Honda
and
H.
Osada
, “
Infinite-dimensional stochastic differential equations related to Bessel random point fields
,”
Stochastic Process. Appl.
125
(
10
),
3801
3822
(
2015
).
27.
Y.
Kawamoto
, “
Interacting Brownian motions in infinite dimensions related to the origin of the spectrum of random matrices
,”
Mod. Stochastics: Theory Appl.
9
,
89
122
(
2022
).
28.
H.
Osada
and
H.
Tanemura
, “
Infinite-dimensional stochastic differential equations arising from Airy random point fields
,” arXiv:1408.0632 [math.PR].
29.
S.
Albeverio
,
Y. G.
Kondratiev
, and
M.
Röckner
, “
Analysis and geometry on configuration spaces: The Gibbsian case
,”
J. Funct. Anal.
157
(
1
),
242
291
(
1998
).
30.
D.
Ruelle
, “
Superstable interactions in classical statistical mechanics
,”
Commun. Math. Phys.
18
,
127
159
(
1970
).
31.
I.
Corwin
and
X.
Sun
, “
Ergodicity of the Airy line ensemble
,”
Electron. Commun. Probab.
19
(
49
),
1
11
(
2014
).
32.
M.
Fukushima
,
Y.
Oshima
, and
M.
Takeda
,
Dirichlet Forms and Symmetric Markov Processes
,
2nd ed.
(
Walter de Gruyter
,
2011
).
33.
A.
Soshnikov
, “
Determinantal random point fields
,”
Russ. Math. Surv.
55
,
923
975
(
2000
).
34.
S.
Ghosh
, “
Determinantal processes and completeness of random exponentials: The critical case
,”
Probab. Theory Relat. Fields
163
(
3–4
),
643
665
(
2015
).
35.
A. I.
Bufetov
, “
Rigidity of determinantal point processes with the Airy, the Bessel and the Gamma kernel
,”
Bull. Math. Sci.
6
,
163
172
(
2016
).
36.
A. I.
Bufetov
,
Y.
Qiu
, and
A.
Shamov
, “
Kernels of conditional determinantal measures and the proof of the Lyons–Peres conjecture
,”
J. Eur. Math. Soc.
23
,
1477
1519
(
2021
).
37.
R.
Lyons
, “
A note on tail triviality for determinantal point processes
,”
Electron. Commun. Probab.
23
,
1
3
(
2018
).
38.
H.
Osada
and
S.
Osada
, “
Discrete approximations of determinantal point processes on continuous spaces: Tree representations and tail triviality
,”
J. Stat. Phys.
170
,
421
(
2018
).
39.
L. R.
Bellet
, “
Ergodic properties of Markov processes
,” in
Open Quantum Systems II
, Lecture Notes in Mathematics Vol. 1881 (
Springer
,
Berlin
,
2006
), pp.
1
39
.
You do not currently have access to this content.