We give a precise description of spectral types of the mosaic Maryland model with any irrational frequency, which provides a quasi-periodic unbounded model with non-monotone potential having arithmetic phase transition.

1.
S.
Fishman
,
D. R.
Grempel
, and
R. E.
Prange
, “
Localization in a d-dimensional incommensurate structure
,”
Phys. Rev. B
29
,
4272
4276
(
1984
).
2.
B.
Simon
, “
Almost periodic Schrödinger operators IV. The Maryland model
,”
Ann. Phys.
159
,
157
183
(
1985
).
3.
M. V.
Berry
, “
Incommensurability in an exactly-soluble quantal and classical model for a kicked rotator
,”
Physica D
10
,
369
378
(
1984
).
4.
S.
Fishman
, “
Anderson localization and quantum chaos maps
,”
Scholarpedia
5
,
9816
(
2010
).
5.
S.
Ganeshan
,
K.
Kechedzhi
, and
S. D.
Sarma
, “
Critical integer quantum Hall topology and the integrable Maryland model as a topological quantum critical point
,”
Phys. Rev. B
90
,
041405(R)
(
2014
).
6.
S.
Longhi
, “
Maryland model in optical waveguide lattices
,”
Opt. Lett.
46
,
637
640
(
2021
).
7.
B.
Simon
and
T.
Spencer
, “
Trace class perturbations and the absence of absolutely continuous spectra
,”
Commun. Math. Phys.
125
,
113
125
(
1989
).
8.
A. L.
Figotin
and
L. A.
Pastur
, “
An exactly solvable model of a multidimensional incommensurate structure
,”
Commun. Math. Phys.
95
,
401
425
(
1984
).
9.
J.
Bellissard
,
R.
Lima
, and
E.
Scoppola
, “
Localization in v-dimensional incommensurate structures
,”
Commun. Math. Phys.
88
,
465
477
(
1983
).
10.
I.
Kachkovskiy
, “
Localization for quasiperiodic operators with unbounded monotone potentials
,”
J. Funct. Anal.
277
,
3467
3490
(
2019
).
11.
I.
Kachkovskiy
,
S.
Krymski
,
L.
Parnovski
, and
R.
Shterenberg
, “
Perturbative diagonalization for Maryland-type quasiperiodic operators with flat pieces
,”
J. Math. Phys.
62
,
063509
(
2021
).
12.
R.
Peierls
, “
Zur theorie des diamagnetismus von leitungselektronen
,”
Z. Phys.
80
,
763
791
(
1933
).
13.
P. G.
Harper
, “
Single band motion of conduction electrons in a uniform magnetic field
,”
Proc. Phys. Soc., Sect. A
68
,
874
(
1955
).
14.
A.
Rauh
, “
Degeneracy of Landau levels in crystals
,”
Phys. Status Solidi B
65
,
K131
K135
(
1974
).
15.
J.
Bourgain
and
S. Y.
Jitomirskaya
, “
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential
,”
J. Stat. Phys.
108
,
1203
1218
(
2001
).
16.
M. R.
Herman
, “
Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractere local d’un théoreme d’Arnold et de Moser sur le tore de dimension 2
,”
Comment. Math. Helvetici
58
,
453
502
(
1983
).
17.
S.
Aubry
and
G.
André
, “
Analyticity breaking and Anderson localization in incommensurate lattices
,”
Ann. Isr. Phys. Soc.
3
,
18
(
1980
).
18.
Y.
Last
, “
A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants
,”
Commun. Math. Phys.
151
,
183
192
(
1993
).
19.
A.
Avila
, “
Absolutely continuous spectrum for the almost Mathieu operator with subcritical coupling
,” arXiv:0810.2965 (
2008
).
20.
A.
Avila
and
D.
Damanik
, “
Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling
,”
Invent. Math.
172
,
439
453
(
2008
).
21.
A.
Avila
and
S.
Jitomirskaya
, “
Almost localization and almost reducibility
,”
J. Eur. Math. Soc.
12
(1),
93
131
(
2009
).
22.
S.
Jitomirskaya
, “
Metal-insulator transition for the almost Mathieu operator
,”
Ann. Math.
150
,
1159
1175
(
1999
).
23.
A.
Avila
,
J.
You
, and
Q.
Zhou
, “
Sharp phase transitions for the almost Mathieu operator
,”
Duke Math. J.
166
,
2697
2718
(
2017
).
24.
S.
Jitomirskaya
and
W.
Liu
, “
Universal hierarchical structure of quasiperiodic eigenfunctions
,”
Ann. Math.
187
,
721
776
(
2018
).
25.
S.
Jitomirskaya
and
W.
Liu
, “
Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,” arXiv:1802.00781 (
2018
).
26.
S.
Jitomirskaya
and
W.
Liu
, “
Arithmetic spectral transitions for the Maryland model
,”
Commun. Pure Appl. Math.
70
,
1025
1051
(
2016
).
27.
S.
Jitomirskaya
and
F.
Yang
, “
Pure point spectrum for the Maryland model: A constructive proof
,”
Ergodic Theory Dyn. Syst.
41
,
283
294
(
2021
).
28.
R.
Han
,
S.
Jitomirskaya
, and
F.
Yang
, “
Anti-resonances and sharp analysis of Maryland localization for all parameters
,” arXiv:2205.04021 (
2022
).
29.
Y.
Wang
,
X.
Xia
,
J.
You
,
Z.
Zheng
, and
Q.
Zhou
, “
Exact mobility edges for 1D quasiperiodic models
,” arXiv:2110.00962 (
2021
).
30.
Y.
Wang
,
X.
Xia
,
L.
Zhang
,
H.
Yao
,
S.
Chen
,
J.
You
,
Q.
Zhou
, and
X.-J.
Liu
, “
One-dimensional quasiperiodic mosaic lattice with exact mobility edges
,”
Phys. Rev. Lett.
125
,
196604
(
2020
).
31.
D.
Damanik
,
J.
Fillman
, and
P.
Gohlke
, “
Spectral characteristics of Schrödinger operators generated by product systems
,” arXiv:2203.11739 [math.SP] (
2022
).
32.
P.
Walters
, “
Ergodic theory and differentiable dynamics by Ricardo Mañé: Translated from the Portuguese by Silvio Levy. Ergebnisse de mathematik und ihrer grenzgebiete, 3 folge-band 8. Springer-Verlag 1987
,”
Ergodic Theory Dyn. Syst.
9
,
399
401
(
1989
).
33.
A.
Avila
and
S.
Jitomirskaya
, “
The ten Martini problem
,”
Ann. Math.
170
,
303
342
(
2009
).
34.
A.
Avila
, “
Global theory of one-frequency Schrödinger operators
,”
Acta Math.
215
,
1
54
(
2015
).
35.
S.
Jitomirskaya
and
C. A.
Marx
, “
Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model
,”
Commun. Math. Phys.
316
,
237
267
(
2012
).
36.
S.
Jitomirskaya
and
C. A.
Marx
, “
Erratum to: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model
,”
Commun. Math. Phys.
317
,
269
271
(
2013
).
37.
R.
Han
, “
Shnol’s theorem and the spectrum of long range operators
,”
Proc. Am. Math. Soc.
147
,
2887
2897
(
2019
).
38.
S.
Jitomirskaya
and
F.
Yang
, “
Singular continuous spectrum for singular potentials
,”
Commun. Math. Phys.
351
,
1127
1135
(
2017
).
39.
A.
Furman
, “
On the multiplicative ergodic theorem for uniquely ergodic systems
,”
Ann. Inst. Henri Poincare
33
,
797
815
(
1997
).
40.
A.
Avila
,
S.
Jitomirskaya
, and
Q.
Zhou
, “
Second phase transition line
,”
Math. Ann.
370
,
271
285
(
2018
).
41.
W.
Liu
and
X.
Yuan
, “
Anderson localization for the completely resonant phases
,”
J. Funct. Anal.
268
,
732
747
(
2015
).
You do not currently have access to this content.