A method of recovering the potential of the fourth-order binomial operator on a half-interval [1/2, 1] using a known potential on another half-interval [0, 1/2] and the eigenvalues of the self-adjoint boundary problem on the whole interval [0, 1] is proposed.

1.
H.
Hochstadt
and
B.
Lieberman
, “
An inverse Sturm–Liouville problem with mixed given data
,”
SIAM J. Appl. Math.
34
,
676
680
(
1978
).
2.
F.
Gesztesy
and
B.
Simon
, “
Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum
,”
Trans. Amer. Math. Soc.
352
,
2765
2787
(
2000
).
3.
R.
del-Rio
,
F.
Gesztesy
, and
B.
Simon
, “
Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions
,”
Int. Math. Res. Not.
1997
(
15
),
751
758
.
4.
V. N.
Pivovarchik
, “
An inverse Sturm-Liouville problem by three spectra
,”
Integr. Equations Oper. Theory
34
,
234
243
(
1999
).
5.
O.
Martinyuk
and
V.
Pivovarchik
, “
On the Hochstadt–Lieberman theorem
,”
Inverse Probl.
26
,
035011
(
2010
).
6.
G.
Wei
and
H.-K.
Xu
, “
Inverse spectral problem with partial information given on the potential and norming constants
,”
Trans. Am. Math. Soc.
364
,
3265
3288
(
2012
).
7.
C.-F.
Yang
and
D.-Q.
Liu
, “
Half-inverse problem for the Dirac operator
,”
Appl. Math. Lett.
87
,
172
178
(
2019
).
8.
V.
Barcilon
, “
On the solution of inverse problems of higher order
,”
Geophys. J. R. Astron. Soc.
39
,
143
154
(
1974
).
9.
Z. L.
Leibenzon
, “
Spectral resolutions of transformations of systems of boundary value problems
,”
Tr. Mosk. Mat. Obs.
25
,
15
58
(
1971
) [Trans. Moscow Math. Soc. 25, 13–61 (1971)].
10.
J. R.
McLaughlin
, “
An inverse eigenvalue problem of order four
,”
SIAM J. Math. Anal.
7
,
646
661
(
1976
).
11.
J. R.
McLaughlin
, “
Higher order inverse eigenvalue problems, ordinary and partial differential equations
,”
Lect. Notes Math.
964
,
503
518
(
1982
).
12.
J. R.
McLaughlin
, “
Analytical methods for recovering coefficients in differential equations from spectral data
,”
SIAM Rev.
28
,
53
72
(
1986
).
13.
È. F.
Akhmerova
, “
Asymptotics of the spectrum of nonsmooth perturbations of differential operators of order 2m
,”
Mat. Zametki
90
,
833
844
(
2011
) [Math. Notes 90, 813–823 (2011)].
14.
A.
Schueller
, “
Eigenvalue asymptotics for self-adjoint, fourth-order, ordinary differential operators
,” Ph.D. thesis,
Department of Mathematics, University of Kentucky
,
1996
.
15.
S. I.
Mitrokhin
, “
Asymptotic behavior of the eigenvalues of a fourth-order differential operator with summable coefficients
,”
Vestnik Moskov. Univ., Ser. I Mat. Mekh.
3
,
14
17
(
2009
) [Trans. Moscow Univ. Math. Bull. 64, 102–104 (2009)].
16.
B. Y.
Levin
,
Distribution of Zeros of Entire Functions
(
American Mathematical Society
,
Providence
,
1980
).
17.
B. J.
Levin
and
J. I.
Ljubarskiĭ
, “
Interpolation by entire functions of special classes and related expansions in series of exponents
,”
Izv. Akad. Nauk USSR
39
,
657
702
(
1975
) (in Russian).
18.
A.
Boumenir
, “
Sampling for the fourth-order Sturm–Liouville differential operator
,”
J. Math. Anal. Appl.
278
,
542
550
(
2003
).
19.
A.
Badanin
and
E.
Korotyaev
, “
Inverse problems and sharp eigenvalue asymptotics for Euler–Bernoulli operators
,”
Inverse Probl.
31
,
055004
(
2015
).
20.
L. F.
Caudill
, Jr.
,
P. A.
Perry
, and
A. W.
Schueller
, “
Isospectral sets for fourth-order ordinary differential operators
,”
SIAM J. Math. Anal.
29
,
935
966
(
1998
).
21.
M. A.
Naimark
,
Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators
(
Frederick Ungar Publishing Co.
,
New York
,
1967
).
22.
B. Y.
Levin
and
I. V.
Ostrovskii
, “
On small perturbations of the set of zeros of functions of sine type
,”
Ross. Akad. Nauk Teor. Sist. Upr.
43
,
87
110
(
1979
) [Trans. Math. USSR-Izv. 14,
79
101
(
1980
)].
23.
J.
Locker
,
Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators
, Mathematical Surveys and Monographs Vol. 73 (
AMS
,
Providence, RI
,
2000
).
You do not currently have access to this content.