We study the residual entropy of a two-dimensional Ising model with crossing and four-spin interactions, both in the case of a zero magnetic field and in an imaginary magnetic field iπ/2kBT. The spin configurations of this Ising model can be mapped into the hydrogen configurations of square ice with the defined standard direction of the hydrogen bonds. Making use of the equivalence of this Ising system with the exactly solved eight-vertex model and taking the low temperature limit, we obtain the residual entropy. Two soluble cases in the zero field and one soluble case in the imaginary field are examined. In the case that the free-fermion condition holds in zero field, we find that the ground states in the low temperature limit include the configurations disobeying the ice rules. In another case in zero field where the four-spin interactions are −∞ and another case in imaginary field where the four-spin interactions are 0, the residual entropy exactly agrees with the result of square ice determined by Lieb in 1967. In the solutions to the latter two cases, we have shown alternative approaches to the residual entropy problem of square ice.

1.
E.
Ising
,
Z. Phys.
31
(
1
),
253
258
(
1925
).
2.
L.
Onsager
,
Phys. Rev.
65
(
3–4
),
117
149
(
1944
).
3.
B.
Kaufman
,
Phys. Rev.
76
(
8
),
1232
1243
(
1949
).
4.
M.
Kac
and
J. C.
Ward
,
Phys. Rev.
88
(
6
),
1332
1337
(
1952
).
5.
T. D.
Schultz
,
D. C.
Mattis
, and
E. H.
Lieb
,
Rev. Mod. Phys.
36
(
3
),
856
871
(
1964
).
6.
T. D.
Lee
and
C. N.
Yang
,
Phys. Rev.
87
(
3
),
410
419
(
1952
).
7.
G.
Baxter
,
J. Math. Phys.
6
(
7
),
1015
1021
(
1965
).
8.
G.
Baxter
,
J. Math. Phys.
8
(
3
),
399
405
(
1967
).
9.
B. M.
McCoy
and
T. T.
Wu
,
Phys. Rev.
155
(
2
),
438
452
(
1967
).
10.
T. W.
Marshall
,
Mol. Phys.
21
(
5
),
847
852
(
1971
).
11.
A.
Gaaff
,
Phys. Lett. A
49
(
2
),
103
105
(
1974
).
12.
D.
Merlini
,
Lett. Nuovo Cimento
9
(
3
),
100
104
(
1974
).
13.
H. J.
Giacomini
,
J. Phys. A: Math. Gen.
18
(
17
),
L1087
L1093
(
1985
).
14.
F. Y.
Wu
,
J. Stat. Phys.
44
(
3
),
455
463
(
1986
).
15.
R.
Liebmann
,
Statistical Mechanics of Periodic Frustrated Ising Systems
(
Springer-Verlag
,
Berlin
,
1986
).
16.
Frustrated Spin Systems
, edited by
H. T.
Diep
(
World Scientific
,
Singapore
,
2013
).
17.
W. F.
Giauque
and
M. F.
Ashley
,
Phys. Rev.
43
(
1
),
81
82
(
1933
).
18.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
(
8
),
515
548
(
1933
).
19.
L.
Pauling
,
J. Am. Chem. Soc.
57
(
12
),
2680
2684
(
1935
).
20.
L.
Onsager
and
M.
Dupuis
,
Rend. Scuola Intern. Fis. E. Fermi Corso
10
,
294
(
1960
).
21.
E. A.
DiMarzio
and
F. H.
Stillinger
, Jr.
,
J. Chem. Phys.
40
(
6
),
1577
1581
(
1964
).
22.
J. F.
Nagle
,
J. Math. Phys.
7
(
8
),
1484
1491
(
1966
).
23.
W. F.
Giauque
and
J. W.
Stout
,
J. Am. Chem. Soc.
58
(
7
),
1144
1150
(
1936
).
24.
E. H.
Lieb
,
Phys. Rev.
162
(
1
),
162
172
(
1967
).
25.
E. H.
Lieb
,
Phys. Rev. Lett.
18
(
17
),
692
694
(
1967
).
26.
G. H.
Wannier
,
Phys. Rev.
79
(
2
),
357
364
(
1950
).
27.
K.
Kanô
and
S.
Naya
,
Prog. Theor. Phys.
10
(
2
),
158
172
(
1953
).
28.
P. W.
Anderson
,
Phys. Rev.
102
(
4
),
1008
1013
(
1956
).
29.
E. H.
Lieb
and
F. Y.
Wu
,
Phase Transitions and Critical Phenomena. Vol. 1: Exact Results
(
Academic Press
,
London
,
1972
).
30.
F. W.
Wu
,
Phys. Rev. B
4
(
7
),
2312
2314
(
1971
).
31.
F. Y.
Wu
,
Phys. Rev. Lett.
22
(
22
),
1174
1176
(
1969
).
32.
F. Y.
Wu
,
Phys. Rev. Lett.
24
(
26
),
1476
1478
(
1970
).
33.
C.
Fan
and
F. Y.
Wu
,
Phys. Rev.
179
(
2
),
560
569
(
1969
).
34.
C.
Fan
and
F. Y.
Wu
,
Phys. Rev. B
2
(
3
),
723
733
(
1970
).
35.
R. J.
Baxter
,
Phys. Rev. Lett.
26
(
14
),
832
833
(
1971
).
36.
R. J.
Baxter
,
Ann. Phys.
70
(
1
),
193
228
(
1972
).
37.
R. J.
Baxter
,
Philos. Trans. R. Soc. London, Ser. A
289
(
1359
),
315
346
(
1978
).
38.
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Academic Press
,
London
,
1982
).
39.
T. W.
Burkhardt
,
Phys. Rev. B
20
(
7
),
2905
2913
(
1979
).
40.
L.
Vanderstraeten
,
B.
Vanhecke
, and
F.
Verstraete
,
Phys. Rev. E
98
(
4
),
042145
(
2018
).
You do not currently have access to this content.