We consider a random Hamiltonian H:Σ→R defined on a compact space Σ that admits a transitive action by a compact group G. When the law of H is G-invariant, we show its expected free energy relative to the unique G-invariant probability measure on Σ, which obeys a subadditivity property in the law of H itself. The bound is often tight for weak disorder and relates free energies at different temperatures when H is a Gaussian process. Many examples are discussed, including branching random walks, several spin glasses, random constraint satisfaction problems, and the random field Ising model. We also provide a generalization to quantum Hamiltonians with applications to the quantum Sherrington–Kirkpatrick and Sachdev–Ye–Kitaev models.
REFERENCES
1.
Achlioptas
, D.
and Peres
, Y.
, “The threshold for random k-SAT is 2k log 2 − O(k)
,” J. Am. Math. Soc.
17
, 947
–973
(2004
).2.
Adhikari
, A.
and Brennecke
, C.
, “Free energy of the quantum Sherrington–Kirkpatrick spin-glass model with transverse field
,” J. Math. Phys.
61
(8
), 083302
(2020
).3.
Aizenman
, M.
and Wehr
, J.
, “Rounding effects of quenched randomness on first-order phase transitions
,” Commun. Math. Phys.
130
(3
), 489
–528
(1990
).4.
Arous
, G. B.
, Mei
, S.
, Montanari
, A.
, and Nica
, M.
, “The landscape of the spiked tensor model
,” Commun. Pure Appl. Math.
72
(11
), 2282
–2330
(2019
).5.
Auffinger
, A.
and Chen
, W.-K.
, “The Parisi formula has a unique minimizer
,” Commun. Math. Phys.
335
(3
), 1429
–1444
(2015
).6.
Baik
, J.
, Ben Arous
, G.
, and Péché
, S.
, “Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
,” Ann. Probab.
33
, 1643
–1697
(2005
).7.
Barbier
, J.
and Sáenz
, M.
, “Marginals of a spherical spin glass model with correlated disorder
,” Electron. Commun. Probab.
27
, 1
–12
(2022
).8.
Barra
, A.
, Contucci
, P.
, Mingione
, E.
, and Tantari
, D.
, “Multi-species mean field spin glasses. Rigorous results
,” Ann. Henri Poincaré
16
, 691
–708
(2015
).9.
Bates
, E.
and Sohn
, Y.
, “Crisanti–Sommers formula and simultaneous symmetry breaking in multi-species spherical spin glasses
,” Commun. Math. Phys.
394
(3
), 1101
–1152
(2022
).10.
Bates
, E.
and Sohn
, Y.
, “Free energy in multi-species mixed p-spin spherical models
,” Electron. J. Probab.
27
, 1
–75
(2022
).11.
Bayati
, M.
, Gamarnik
, D.
, and Tetali
, P.
, “Combinatorial approach to the interpolation method and scaling limits in sparse random graphs
,” Ann. Probab.
41
(6
), 4080
–4115
(2013
).12.
Benaych-Georges
, F.
and Nadakuditi
, R. R.
, “The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
,” Adv. Math.
227
(1
), 494
–521
(2011
).13.
Bhattacharya
, B. B.
and Sen
, S.
, “High temperature asymptotics of orthogonal mean-field spin glasses
,” J. Stat. Phys.
162
(1
), 63
–80
(2016
).14.
Bramson
, M. D.
, “Maximal displacement of branching Brownian motion
,” Commun. Pure Appl. Math.
31
(5
), 531
–581
(1978
).15.
Bricmont
, J.
and Kupiainen
, A.
, “Phase transition in the 3d random field Ising model
,” Commun. Math. Phys.
116
(4
), 539
–572
(1988
).16.
Brunet
, É.
and Derrida
, B.
, “A branching random walk seen from the tip
,” J. Stat. Phys.
143
(3
), 420
–446
(2011
).17.
Buffet
, E.
, Patrick
, A.
, and Pulé
, J. V.
, “Directed polymers on trees: A martingale approach
,” J. Phys. A: Math. Gen.
26
(8
), 1823
(1993
).18.
Chatterjee
, S.
, “Central limit theorem for the free energy of the random field Ising model
,” J. Stat. Phys.
175
(1
), 185
–202
(2019
).19.
Chauvin
, B.
and Rouault
, A.
, “Boltzmann-Gibbs weights in the branching random walk
,” in Classical and Modern Branching Processes
(Springer
, 1997
), pp. 41
–50
.20.
Chen
, W.-K.
, “Chaos in the mixed even-spin models
,” Commun. Math. Phys.
328
(3
), 867
–901
(2014
).21.
Chen
, W.-K.
, “Variational representations for the Parisi functional and the two-dimensional Guerra–Talagrand bound
,” Ann. Probab.
45
(6A
), 3929
–3966
(2017
).22.
Chen
, W.-K.
, “Phase transition in the spiked random tensor with Rademacher prior
,” Ann. Stat.
47
(5
), 2734
–2756
(2019
).23.
Chen
, W.-K.
, Gamarnik
, D.
, Panchenko
, D.
, and Rahman
, M.
, “Suboptimality of local algorithms for a class of max-cut problems
,” Ann. Probab.
47
(3
), 1587
–1618
(2019
).24.
Chen
, W.-K.
, Handschy
, M.
, and Lerman
, G.
, “On the energy landscape of the mixed even p-spin model
,” Probab. Theory Relat. Fields
171
(1–2
), 53
–95
(2018
).25.
Chen
, W.-K.
, Hsieh
, H.-W.
, Hwang
, C.-R.
, and Sheu
, Y.-C.
, “Disorder chaos in the spherical mean-field model
,” J. Stat. Phys.
160
(2
), 417
–429
(2015
).26.
Chen
, W.-K.
and Panchenko
, D.
, “Disorder chaos in some diluted spin glass models
,” Ann. Appl. Probab.
28
(3
), 1356
–1378
(2018
).27.
Chen
, W.-K.
and Sen
, A.
, “Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed p-spin models
,” Commun. Math. Phys.
350
(1
), 129
–173
(2017
).28.
Coja-Oghlan
, A.
and Panagiotou
, K.
, “The asymptotic k-SAT threshold
,” Adv. Math.
288
, 985
–1068
(2016
).29.
Contucci
, P.
and Lebowitz
, J.
, “Correlation inequalities for spin glasses
,” Ann. Henri Poincaré
8
, 1461
–1467
(2007
).30.
Crawford
, N.
, “Thermodynamics and universality for mean field quantum spin glasses
,” Commun. Math. Phys.
274
(3
), 821
–839
(2007
).31.
Derrida
, B.
, “A generalization of the random energy model which includes correlations between energies
,” J. Phys. Lett.
46
(9
), 401
–407
(1985
).32.
Derrida
, B.
and Gardner
, E.
, “Solution of the generalised random energy model
,” J. Phys. C: Solid State Phys.
19
(13
), 2253
(1986
).33.
Diestel
, J.
and Spalsbury
, A.
, The Joys of Haar Measure
(American Mathematical Society
, 2014
).34.
Ding
, J.
, Sly
, A.
, and Sun
, N.
, “Satisfiability threshold for random regular NAE-SAT
,” Commun. Math. Phys.
341
(2
), 435
–489
(2016
).35.
Ding
, J.
, Sly
, A.
, and Sun
, N.
, “Proof of the satisfiability conjecture for large k
,” Ann. Math.
196
(1
), 1
–388
(2022
).36.
Ding
, J.
and Sun
, N.
, “Capacity lower bound for the Ising perceptron
,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(Association for Computing Machinery
, 2019
).37.
Ding
, J.
and Xia
, J.
, “Exponential decay of correlations in the two-dimensional random field Ising model
,” Invent. Math.
224
(3
), 999
–1045
(2021
).38.
Donoho
, D. L.
, Gavish
, M.
, and Johnstone
, I. M.
, “Optimal shrinkage of eigenvalues in the spiked covariance model
,” Ann. Stat.
46
(4
), 1742
(2018
).39.
Edwards
, S. F.
and Anderson
, P. W.
, “Theory of spin glasses
,” J. Phys. F: Met. Phys.
5
(5
), 965
(1975
).40.
Fan
, Z.
, Li
, Y.
, and Sen
, S.
, “TAP equations for orthogonally invariant spin glasses at high temperature
,” arXiv:2202.09325 (2022
).41.
Fan
, Z.
and Wu
, Y.
, “The replica-symmetric free energy for Ising spin glasses with orthogonally invariant couplings
,” arXiv:2105.02797 (2021
).42.
Forrester
, P. J.
and Thompson
, C. J.
, “The Golden-Thompson inequality: Historical aspects and random matrix applications
,” J. Math. Phys.
55
(2
), 023503
(2014
).43.
Fröhlich
, J.
and Zegarlinski
, B.
, “Some comments on the Sherrington-Kirkpatrick model of spin glasses
,” Commun. Math. Phys.
112
(4
), 553
–566
(1987
).44.
Gamarnik
, D.
, Jagannath
, A.
, and Wein
, A. S.
, “Low-degree hardness of random optimization problems
,” in 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
(IEEE
, 2020
), pp. 131
–140
.45.
Golden
, S.
, “Lower bounds for the Helmholtz function
,” Phys. Rev.
137
(4B
), B1127
(1965
).46.
Goldschmidt
, Y. Y.
and Lai
, P.-Y.
, “Ising spin glass in a transverse field: Replica-symmetry-breaking solution
,” Phys. Rev. Lett.
64
(21
), 2467
(1990
).47.
Guerra
, F.
, “Broken replica symmetry bounds in the mean field spin glass model
,” Commun. Math. Phys.
233
(1
), 1
–12
(2003
).48.
Guerra
, F.
and Toninelli
, F. L.
, “The thermodynamic limit in mean field spin glass models
,” Commun. Math. Phys.
230
(1
), 71
–79
(2002
).49.
Huang
, B.
, “Convergence of maximum bisection ratio of sparse random graphs
,” Electron. Commun. Probab.
23
, 1
–10
(2018
).50.
Huang
, B.
and Sellke
M.
, “Tight Lipschitz hardness for optimizing mean field spin glasses
,” arXiv:2110.07847 (2021
).51.
Imry
, Y.
and Ma
, S.-k.
, “Random-field instability of the ordered state of continuous symmetry
,” Phys. Rev. Lett.
35
(21
), 1399
(1975
).52.
Jagannath
, A.
, “On the overlap distribution of branching random walks
,” Electron. J. Probab.
21
, 1
–16
(2016
).53.
Jagannath
, A.
and Lopatto
, P.
, “Existence of the free energy for heavy-tailed spin glasses
,” arXiv:2211.09879 (2022
).54.
Jagannath
, A.
and Tobasco
, I.
, “A dynamic programming approach to the Parisi functional
,” Proc. Am. Math. Soc.
144
(7
), 3135
–3150
(2016
).55.
Johnstone
, I. M.
, “On the distribution of the largest eigenvalue in principal components analysis
,” Ann. Stat.
29
(2
), 295
–327
(2001
).56.
Kitaev
, A.
, “A simple model of quantum holography
,” talks at KITP
, April 7, 2015 and May 27, 2015
, https://online.kitp.ucsb.edu/online/entangled15/kitaev/, https://online.kitp.ucsb.edu/online/entangled15/kitaev2/.57.
Kivimae
, P.
, “The ground state energy and concentration of complexity in spherical bipartite models
,” arXiv:2107.13138 (2021
).58.
Ko
, J.
, “Free energy of multiple systems of spherical spin glasses with constrained overlaps
,” Electron. J. Probab.
25
, 1
–34
(2020
).59.
Lalley
, S. P.
and Sellke
, T.
, “A conditional limit theorem for the Frontier of a branching Brownian motion
,” Ann. Probab.
15
, 1052
–1061
(1987
).60.
Leschke
, H.
, Rothlauf
, S.
, Ruder
, R.
, and Spitzer
, W.
, “The free energy of a quantum Sherrington–Kirkpatrick spin-glass model for weak disorder
,” J. Stat. Phys.
182
(3
), 55
(2021
).61.
Marinari
, E.
, Parisi
, G.
, and Ritort
, F.
, “Replica field theory for deterministic models. II. A non-random spin glass with glassy behaviour
,” J. Phys. A: Math. Gen.
27
(23
), 7647
(1994
).62.
Mourrat
, J.-C.
, “Nonconvex interactions in mean-field spin glasses
,” Probab. Math. Phys.
2
(2
), 281
–339
(2021
).63.
Nam
, D.
, Sly
, A.
, and Sohn
, Y.
, “One-step replica symmetry breaking of random regular NAE-SAT
,” in 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)
(IEEE
, 2022
), pp. 310
–318
.64.
Newman
, C. M.
and Stein
, D. L.
, “Metastate approach to thermodynamic chaos
,” Phys. Rev. E
55
(5
), 5194
(1997
).65.
Panchenko
, D.
, “The Parisi ultrametricity conjecture
,” Ann. Math.
177
, 383
–393
(2013
).66.
Panchenko
, D.
, The Sherrington-Kirkpatrick Model
(Springer Science & Business Media
, 2013
).67.
Panchenko
, D.
, “The Parisi formula for mixed p-spin models
,” Ann. Probab.
42
(3
), 946
–958
(2014
).68.
Panchenko
, D.
, “The free energy in a multi-species Sherrington–Kirkpatrick model
,” Ann. Probab.
43
(6
), 3494
–3513
(2015
).69.
Panchenko
, D.
, “Free energy in the mixed p-spin models with vector spins
,” Ann. Probab.
46
(2
), 865
–896
(2018
).70.
Panchenko
, D.
and Talagrand
, M.
, “On the overlap in the multiple spherical SK models
,” Ann. Probab.
35
(6
), 2321
–2355
(2007
).71.
Parisi
, G.
, “Infinite number of order parameters for spin-glasses
,” Phys. Rev. Lett.
43
(23
), 1754
(1979
).72.
Parisi
, G.
and Potters
, M.
, “Mean-field equations for spin models with orthogonal interaction matrices
,” J. Phys. A: Math. Gen.
28
(18
), 5267
(1995
).73.
Perry
, A.
, Wein
, A. S.
, and Bandeira
, A. S.
, “Statistical limits of spiked tensor models
,” Ann. Inst. Henri Poincaré
56
(1
), 230
–264
(2020
).74.
Perry
, A.
, Wein
, A. S.
, Bandeira
, A. S.
, and Moitra
, A.
, “Optimality and sub-optimality of PCA I: Spiked random matrix models
,” Ann. Stat.
46
(5
), 2416
–2451
(2018
).75.
Ray
, P.
, Chakrabarti
, B. K.
, and Chakrabarti
, A.
, “Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations
,” Phys. Rev. B
39
(16
), 11828
(1989
).76.
Rosenhaus
, V.
, “An introduction to the SYK model
,” J. Phys. A: Math. Theor.
52
(32
), 323001
(2019
).77.
Sachdev
, S.
and Ye
, J.
, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet
,” Phys. Rev. Lett.
70
(21
), 3339
(1993
).78.
Subag
, E.
, “On the second moment method and RS phase of multi-species spherical spin glasses
,” arXiv:2111.07133 (2021
).79.
Subag
, E.
, “TAP approach for multi-species spherical spin glasses I: General theory
,” arXiv:2111.07132 (2021
).80.
Subag
, E.
, “TAP approach for multi-species spherical spin glasses II: The free energy of the pure models
,” arXiv:2111.07134 (2021
).81.
Talagrand
, M.
, “The Parisi formula
,” Ann. Math.
163
, 221
–263
(2006
).82.
Talagrand
, M.
, Mean Field Models for Spin Glasses. Volume I: Basic Examples
(Springer Science & Business Media
, 2011
), Vol. 54.83.
Talagrand
, M.
, Mean Field Models for Spin Glasses. Volume II: Advanced Replica-Symmetry and Low Temperature
(Springer Science & Business Media
, 2011
), Vol. 55.84.
Thompson
, C. J.
, “Inequality with applications in statistical mechanics
,” J. Math. Phys.
6
(11
), 1812
–1813
(1965
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.