We consider a random Hamiltonian H:Σ→R defined on a compact space Σ that admits a transitive action by a compact group G. When the law of H is G-invariant, we show its expected free energy relative to the unique G-invariant probability measure on Σ, which obeys a subadditivity property in the law of H itself. The bound is often tight for weak disorder and relates free energies at different temperatures when H is a Gaussian process. Many examples are discussed, including branching random walks, several spin glasses, random constraint satisfaction problems, and the random field Ising model. We also provide a generalization to quantum Hamiltonians with applications to the quantum Sherrington–Kirkpatrick and Sachdev–Ye–Kitaev models.

1.
Achlioptas
,
D.
and
Peres
,
Y.
, “
The threshold for random k-SAT is 2k log 2 − O(k)
,”
J. Am. Math. Soc.
17
,
947
973
(
2004
).
2.
Adhikari
,
A.
and
Brennecke
,
C.
, “
Free energy of the quantum Sherrington–Kirkpatrick spin-glass model with transverse field
,”
J. Math. Phys.
61
(
8
),
083302
(
2020
).
3.
Aizenman
,
M.
and
Wehr
,
J.
, “
Rounding effects of quenched randomness on first-order phase transitions
,”
Commun. Math. Phys.
130
(
3
),
489
528
(
1990
).
4.
Arous
,
G. B.
,
Mei
,
S.
,
Montanari
,
A.
, and
Nica
,
M.
, “
The landscape of the spiked tensor model
,”
Commun. Pure Appl. Math.
72
(
11
),
2282
2330
(
2019
).
5.
Auffinger
,
A.
and
Chen
,
W.-K.
, “
The Parisi formula has a unique minimizer
,”
Commun. Math. Phys.
335
(
3
),
1429
1444
(
2015
).
6.
Baik
,
J.
,
Ben Arous
,
G.
, and
Péché
,
S.
, “
Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
,”
Ann. Probab.
33
,
1643
1697
(
2005
).
7.
Barbier
,
J.
and
Sáenz
,
M.
, “
Marginals of a spherical spin glass model with correlated disorder
,”
Electron. Commun. Probab.
27
,
1
12
(
2022
).
8.
Barra
,
A.
,
Contucci
,
P.
,
Mingione
,
E.
, and
Tantari
,
D.
, “
Multi-species mean field spin glasses. Rigorous results
,”
Ann. Henri Poincaré
16
,
691
708
(
2015
).
9.
Bates
,
E.
and
Sohn
,
Y.
, “
Crisanti–Sommers formula and simultaneous symmetry breaking in multi-species spherical spin glasses
,”
Commun. Math. Phys.
394
(
3
),
1101
1152
(
2022
).
10.
Bates
,
E.
and
Sohn
,
Y.
, “
Free energy in multi-species mixed p-spin spherical models
,”
Electron. J. Probab.
27
,
1
75
(
2022
).
11.
Bayati
,
M.
,
Gamarnik
,
D.
, and
Tetali
,
P.
, “
Combinatorial approach to the interpolation method and scaling limits in sparse random graphs
,”
Ann. Probab.
41
(
6
),
4080
4115
(
2013
).
12.
Benaych-Georges
,
F.
and
Nadakuditi
,
R. R.
, “
The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
,”
Adv. Math.
227
(
1
),
494
521
(
2011
).
13.
Bhattacharya
,
B. B.
and
Sen
,
S.
, “
High temperature asymptotics of orthogonal mean-field spin glasses
,”
J. Stat. Phys.
162
(
1
),
63
80
(
2016
).
14.
Bramson
,
M. D.
, “
Maximal displacement of branching Brownian motion
,”
Commun. Pure Appl. Math.
31
(
5
),
531
581
(
1978
).
15.
Bricmont
,
J.
and
Kupiainen
,
A.
, “
Phase transition in the 3d random field Ising model
,”
Commun. Math. Phys.
116
(
4
),
539
572
(
1988
).
16.
Brunet
,
É.
and
Derrida
,
B.
, “
A branching random walk seen from the tip
,”
J. Stat. Phys.
143
(
3
),
420
446
(
2011
).
17.
Buffet
,
E.
,
Patrick
,
A.
, and
Pulé
,
J. V.
, “
Directed polymers on trees: A martingale approach
,”
J. Phys. A: Math. Gen.
26
(
8
),
1823
(
1993
).
18.
Chatterjee
,
S.
, “
Central limit theorem for the free energy of the random field Ising model
,”
J. Stat. Phys.
175
(
1
),
185
202
(
2019
).
19.
Chauvin
,
B.
and
Rouault
,
A.
, “
Boltzmann-Gibbs weights in the branching random walk
,” in
Classical and Modern Branching Processes
(
Springer
,
1997
), pp.
41
50
.
20.
Chen
,
W.-K.
, “
Chaos in the mixed even-spin models
,”
Commun. Math. Phys.
328
(
3
),
867
901
(
2014
).
21.
Chen
,
W.-K.
, “
Variational representations for the Parisi functional and the two-dimensional Guerra–Talagrand bound
,”
Ann. Probab.
45
(
6A
),
3929
3966
(
2017
).
22.
Chen
,
W.-K.
, “
Phase transition in the spiked random tensor with Rademacher prior
,”
Ann. Stat.
47
(
5
),
2734
2756
(
2019
).
23.
Chen
,
W.-K.
,
Gamarnik
,
D.
,
Panchenko
,
D.
, and
Rahman
,
M.
, “
Suboptimality of local algorithms for a class of max-cut problems
,”
Ann. Probab.
47
(
3
),
1587
1618
(
2019
).
24.
Chen
,
W.-K.
,
Handschy
,
M.
, and
Lerman
,
G.
, “
On the energy landscape of the mixed even p-spin model
,”
Probab. Theory Relat. Fields
171
(
1–2
),
53
95
(
2018
).
25.
Chen
,
W.-K.
,
Hsieh
,
H.-W.
,
Hwang
,
C.-R.
, and
Sheu
,
Y.-C.
, “
Disorder chaos in the spherical mean-field model
,”
J. Stat. Phys.
160
(
2
),
417
429
(
2015
).
26.
Chen
,
W.-K.
and
Panchenko
,
D.
, “
Disorder chaos in some diluted spin glass models
,”
Ann. Appl. Probab.
28
(
3
),
1356
1378
(
2018
).
27.
Chen
,
W.-K.
and
Sen
,
A.
, “
Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed p-spin models
,”
Commun. Math. Phys.
350
(
1
),
129
173
(
2017
).
28.
Coja-Oghlan
,
A.
and
Panagiotou
,
K.
, “
The asymptotic k-SAT threshold
,”
Adv. Math.
288
,
985
1068
(
2016
).
29.
Contucci
,
P.
and
Lebowitz
,
J.
, “
Correlation inequalities for spin glasses
,”
Ann. Henri Poincaré
8
,
1461
1467
(
2007
).
30.
Crawford
,
N.
, “
Thermodynamics and universality for mean field quantum spin glasses
,”
Commun. Math. Phys.
274
(
3
),
821
839
(
2007
).
31.
Derrida
,
B.
, “
A generalization of the random energy model which includes correlations between energies
,”
J. Phys. Lett.
46
(
9
),
401
407
(
1985
).
32.
Derrida
,
B.
and
Gardner
,
E.
, “
Solution of the generalised random energy model
,”
J. Phys. C: Solid State Phys.
19
(
13
),
2253
(
1986
).
33.
Diestel
,
J.
and
Spalsbury
,
A.
,
The Joys of Haar Measure
(
American Mathematical Society
,
2014
).
34.
Ding
,
J.
,
Sly
,
A.
, and
Sun
,
N.
, “
Satisfiability threshold for random regular NAE-SAT
,”
Commun. Math. Phys.
341
(
2
),
435
489
(
2016
).
35.
Ding
,
J.
,
Sly
,
A.
, and
Sun
,
N.
, “
Proof of the satisfiability conjecture for large k
,”
Ann. Math.
196
(
1
),
1
388
(
2022
).
36.
Ding
,
J.
and
Sun
,
N.
, “
Capacity lower bound for the Ising perceptron
,” in
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(
Association for Computing Machinery
,
2019
).
37.
Ding
,
J.
and
Xia
,
J.
, “
Exponential decay of correlations in the two-dimensional random field Ising model
,”
Invent. Math.
224
(
3
),
999
1045
(
2021
).
38.
Donoho
,
D. L.
,
Gavish
,
M.
, and
Johnstone
,
I. M.
, “
Optimal shrinkage of eigenvalues in the spiked covariance model
,”
Ann. Stat.
46
(
4
),
1742
(
2018
).
39.
Edwards
,
S. F.
and
Anderson
,
P. W.
, “
Theory of spin glasses
,”
J. Phys. F: Met. Phys.
5
(
5
),
965
(
1975
).
40.
Fan
,
Z.
,
Li
,
Y.
, and
Sen
,
S.
, “
TAP equations for orthogonally invariant spin glasses at high temperature
,” arXiv:2202.09325 (
2022
).
41.
Fan
,
Z.
and
Wu
,
Y.
, “
The replica-symmetric free energy for Ising spin glasses with orthogonally invariant couplings
,” arXiv:2105.02797 (
2021
).
42.
Forrester
,
P. J.
and
Thompson
,
C. J.
, “
The Golden-Thompson inequality: Historical aspects and random matrix applications
,”
J. Math. Phys.
55
(
2
),
023503
(
2014
).
43.
Fröhlich
,
J.
and
Zegarlinski
,
B.
, “
Some comments on the Sherrington-Kirkpatrick model of spin glasses
,”
Commun. Math. Phys.
112
(
4
),
553
566
(
1987
).
44.
Gamarnik
,
D.
,
Jagannath
,
A.
, and
Wein
,
A. S.
, “
Low-degree hardness of random optimization problems
,” in
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
(
IEEE
,
2020
), pp.
131
140
.
45.
Golden
,
S.
, “
Lower bounds for the Helmholtz function
,”
Phys. Rev.
137
(
4B
),
B1127
(
1965
).
46.
Goldschmidt
,
Y. Y.
and
Lai
,
P.-Y.
, “
Ising spin glass in a transverse field: Replica-symmetry-breaking solution
,”
Phys. Rev. Lett.
64
(
21
),
2467
(
1990
).
47.
Guerra
,
F.
, “
Broken replica symmetry bounds in the mean field spin glass model
,”
Commun. Math. Phys.
233
(
1
),
1
12
(
2003
).
48.
Guerra
,
F.
and
Toninelli
,
F. L.
, “
The thermodynamic limit in mean field spin glass models
,”
Commun. Math. Phys.
230
(
1
),
71
79
(
2002
).
49.
Huang
,
B.
, “
Convergence of maximum bisection ratio of sparse random graphs
,”
Electron. Commun. Probab.
23
,
1
10
(
2018
).
50.
Huang
,
B.
and
Sellke
M.
, “
Tight Lipschitz hardness for optimizing mean field spin glasses
,” arXiv:2110.07847 (
2021
).
51.
Imry
,
Y.
and
Ma
,
S.-k.
, “
Random-field instability of the ordered state of continuous symmetry
,”
Phys. Rev. Lett.
35
(
21
),
1399
(
1975
).
52.
Jagannath
,
A.
, “
On the overlap distribution of branching random walks
,”
Electron. J. Probab.
21
,
1
16
(
2016
).
53.
Jagannath
,
A.
and
Lopatto
,
P.
, “
Existence of the free energy for heavy-tailed spin glasses
,” arXiv:2211.09879 (
2022
).
54.
Jagannath
,
A.
and
Tobasco
,
I.
, “
A dynamic programming approach to the Parisi functional
,”
Proc. Am. Math. Soc.
144
(
7
),
3135
3150
(
2016
).
55.
Johnstone
,
I. M.
, “
On the distribution of the largest eigenvalue in principal components analysis
,”
Ann. Stat.
29
(
2
),
295
327
(
2001
).
56.
Kitaev
,
A.
, “
A simple model of quantum holography
,”
talks at KITP
,
April 7, 2015 and May 27, 2015
, https://online.kitp.ucsb.edu/online/entangled15/kitaev/, https://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
57.
Kivimae
,
P.
, “
The ground state energy and concentration of complexity in spherical bipartite models
,” arXiv:2107.13138 (
2021
).
58.
Ko
,
J.
, “
Free energy of multiple systems of spherical spin glasses with constrained overlaps
,”
Electron. J. Probab.
25
,
1
34
(
2020
).
59.
Lalley
,
S. P.
and
Sellke
,
T.
, “
A conditional limit theorem for the Frontier of a branching Brownian motion
,”
Ann. Probab.
15
,
1052
1061
(
1987
).
60.
Leschke
,
H.
,
Rothlauf
,
S.
,
Ruder
,
R.
, and
Spitzer
,
W.
, “
The free energy of a quantum Sherrington–Kirkpatrick spin-glass model for weak disorder
,”
J. Stat. Phys.
182
(
3
),
55
(
2021
).
61.
Marinari
,
E.
,
Parisi
,
G.
, and
Ritort
,
F.
, “
Replica field theory for deterministic models. II. A non-random spin glass with glassy behaviour
,”
J. Phys. A: Math. Gen.
27
(
23
),
7647
(
1994
).
62.
Mourrat
,
J.-C.
, “
Nonconvex interactions in mean-field spin glasses
,”
Probab. Math. Phys.
2
(
2
),
281
339
(
2021
).
63.
Nam
,
D.
,
Sly
,
A.
, and
Sohn
,
Y.
, “
One-step replica symmetry breaking of random regular NAE-SAT
,” in
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)
(
IEEE
,
2022
), pp.
310
318
.
64.
Newman
,
C. M.
and
Stein
,
D. L.
, “
Metastate approach to thermodynamic chaos
,”
Phys. Rev. E
55
(
5
),
5194
(
1997
).
65.
Panchenko
,
D.
, “
The Parisi ultrametricity conjecture
,”
Ann. Math.
177
,
383
393
(
2013
).
66.
Panchenko
,
D.
,
The Sherrington-Kirkpatrick Model
(
Springer Science & Business Media
,
2013
).
67.
Panchenko
,
D.
, “
The Parisi formula for mixed p-spin models
,”
Ann. Probab.
42
(
3
),
946
958
(
2014
).
68.
Panchenko
,
D.
, “
The free energy in a multi-species Sherrington–Kirkpatrick model
,”
Ann. Probab.
43
(
6
),
3494
3513
(
2015
).
69.
Panchenko
,
D.
, “
Free energy in the mixed p-spin models with vector spins
,”
Ann. Probab.
46
(
2
),
865
896
(
2018
).
70.
Panchenko
,
D.
and
Talagrand
,
M.
, “
On the overlap in the multiple spherical SK models
,”
Ann. Probab.
35
(
6
),
2321
2355
(
2007
).
71.
Parisi
,
G.
, “
Infinite number of order parameters for spin-glasses
,”
Phys. Rev. Lett.
43
(
23
),
1754
(
1979
).
72.
Parisi
,
G.
and
Potters
,
M.
, “
Mean-field equations for spin models with orthogonal interaction matrices
,”
J. Phys. A: Math. Gen.
28
(
18
),
5267
(
1995
).
73.
Perry
,
A.
,
Wein
,
A. S.
, and
Bandeira
,
A. S.
, “
Statistical limits of spiked tensor models
,”
Ann. Inst. Henri Poincaré
56
(
1
),
230
264
(
2020
).
74.
Perry
,
A.
,
Wein
,
A. S.
,
Bandeira
,
A. S.
, and
Moitra
,
A.
, “
Optimality and sub-optimality of PCA I: Spiked random matrix models
,”
Ann. Stat.
46
(
5
),
2416
2451
(
2018
).
75.
Ray
,
P.
,
Chakrabarti
,
B. K.
, and
Chakrabarti
,
A.
, “
Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations
,”
Phys. Rev. B
39
(
16
),
11828
(
1989
).
76.
Rosenhaus
,
V.
, “
An introduction to the SYK model
,”
J. Phys. A: Math. Theor.
52
(
32
),
323001
(
2019
).
77.
Sachdev
,
S.
and
Ye
,
J.
, “
Gapless spin-fluid ground state in a random quantum Heisenberg magnet
,”
Phys. Rev. Lett.
70
(
21
),
3339
(
1993
).
78.
Subag
,
E.
, “
On the second moment method and RS phase of multi-species spherical spin glasses
,” arXiv:2111.07133 (
2021
).
79.
Subag
,
E.
, “
TAP approach for multi-species spherical spin glasses I: General theory
,” arXiv:2111.07132 (
2021
).
80.
Subag
,
E.
, “
TAP approach for multi-species spherical spin glasses II: The free energy of the pure models
,” arXiv:2111.07134 (
2021
).
81.
Talagrand
,
M.
, “
The Parisi formula
,”
Ann. Math.
163
,
221
263
(
2006
).
82.
Talagrand
,
M.
,
Mean Field Models for Spin Glasses. Volume I: Basic Examples
(
Springer Science & Business Media
,
2011
), Vol. 54.
83.
Talagrand
,
M.
,
Mean Field Models for Spin Glasses. Volume II: Advanced Replica-Symmetry and Low Temperature
(
Springer Science & Business Media
,
2011
), Vol. 55.
84.
Thompson
,
C. J.
, “
Inequality with applications in statistical mechanics
,”
J. Math. Phys.
6
(
11
),
1812
1813
(
1965
).
You do not currently have access to this content.