The stability and bifurcation properties of one-dimensional discrete dynamical systems with positivity, which are derived from continuous ones by tropical discretization, are studied. The discretized time interval is introduced as a bifurcation parameter in the discrete dynamical systems, and the emergence condition of an additional bifurcation, flip bifurcation, is identified. The correspondence between the discrete dynamical systems with positivity and the ultradiscrete ones derived from them is discussed. It is found that the derived ultradiscrete max-plus dynamical systems can retain the bifurcations of the original continuous ones via tropical discretization and ultradiscretization.

2.
R.
Willox
,
B.
Grammaticos
,
A. S.
Carstea
, and
A.
Ramani
,
Physica A
328
,
13
(
2003
).
3.
A. S.
Carstea
,
A.
Ramani
,
J.
Satsuma
,
R.
Willox
, and
B.
Grammaticos
,
Physica A
364
,
276
(
2006
).
4.
R.
Willox
,
A.
Ramani
,
J.
Satsuma
, and
B.
Grammaticos
,
Physica A
385
,
473
(
2007
).
5.
M.
Murata
,
J. Differ. Equations Appl.
19
,
1008
(
2013
).
6.
K.
Matsuya
and
M.
Murata
,
Discrete Contin. Dyn. Syst. B
20
,
173
(
2015
).
7.
S.
Gibo
and
H.
Ito
,
J. Theor. Biol.
378
,
89
(
2015
).
8.
S.
Ohmori
and
Y.
Yamazaki
,
J. Phys. Soc. Jpn.
85
,
045001
(
2016
).
9.
S.
Ohmori
and
Y.
Yamazaki
,
J. Math. Phys.
61
,
122702
(
2020
).
10.
Y.
Yamazaki
and
S.
Ohmori
,
J. Phys. Soc. Jpn.
90
,
103001
(
2021
).
11.
S.
Ohmori
and
Y.
Yamazaki
, “
Dynamical properties of max-plus equations obtained from tropically discretized Sel'kov model
,” arXiv:2107.02435.
12.
S.
Isojima
and
S.
Suzuki
,
Nonlinearity
35
,
1468
(
2022
).
13.
R. E.
Mickens
,
Nonstandard Finite Difference Models of Differential Equations
(
World Scientific
,
Singapore
,
1994
).
14.
M. E.
Alexander
and
S. M.
Moghadas
,
Electron. J. Differ. Equations
12
,
9
(
2005
).
15.
T.
Tokihiro
,
D.
Takahashi
,
J.
Matsukidaira
, and
J.
Satsuma
,
Phys. Rev. Lett.
76
,
3247
(
1996
).
16.
S.
Ohmori
and
Y.
Yamazaki
,
JSIAM Lett.
14
,
127
(
2022
).
17.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer-Verlag
,
New York
,
1990
).
18.
K.
Matsuya
,
Bull. Musashino Univ. Musashino Cent. Math. Eng.
4
,
50
(
2019
).
You do not currently have access to this content.