In this paper, sufficient conditions are established for the Ulam–Hyers stability of second-order non-instantaneous impulsive fractional neutral stochastic differential equations (NIIFNSDEs) with supremum norm in the pth means square sense. The existence of solution of NIIFNSDEs is derived by using the cosine family of linear operator, Itô’s formula, and Mönch fixed point theorem in infinite-dimensional space. Finally, an example is demonstrated to illustrate the obtained theoretical results.

1.
K.
Dhanalakshmi
and
P.
Balasubramaniam
, “
Exponential stability of impulsive fractional neutral stochastic differential equations
,”
J. Math. Phys.
62
(
9
),
092703
(
2021
).
2.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory and Applications of Fractional Differential Equations
, North-Holland Mathematics Studies (
Elsevier
,
Amsterdam
,
2006
).
3.
V.
Lakshmikantham
,
S.
Leela
, and
J.
Vasundhara Devi
,
Theory of Fractional Dynamic Systems
(
Cambridge Scientific Publishers
,
Cambridge
,
2009
).
4.
K. S.
Miller
and
B.
Ross
,
An Introduction to the Fractional Calculus and Differential Equation
(
John Willey
,
New York
,
1993
).
5.
I.
Podlubny
,
Fractional Differential Equation
(
Academic Press
,
San Diego
,
1999
).
6.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach Science Publisher
,
Switzerland, Philadelphia, PA
,
1997
).
7.
Y.
Zhou
,
Basic Theory of Fractional Differential Equations
(
World Scientific
,
Singapore
,
2014
).
8.
B.
Zhu
,
L.
Lishan
, and
W.
Yonghong
, “
Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
,”
Comput. Math. Appl.
78
,
1811
(
2016
).
9.
B.
Zhu
and
B.
Han
, “
Approximate controllability for mixed type non-autonomous fractional differential equations
,”
Qual. Theory Dyn. Syst.
21
,
111
(
2022
).
10.
F. A.
Rihan
, “
Numerical modeling of fractional-order biological systems
,”
Abstr. Appl. Anal.
2013,
816803
.
11.
Y.
Ferdi
, “
Some applications of fractional order calculus to design digital filters for biomedical signal processing
,”
J. Mech. Med. Biol.
12
,
1240008
(
2016
).
12.
R.
Magin
,
M. D.
Ortigueira
,
I.
Podlubny
, and
J.
Trujillo
, “
On the fractional signals and systems
,”
Signal Process.
91
,
350
371
(
2011
).
13.
R.
Chaudhary
and
D. N.
Pandey
, “
Existence results for a class of impulsive neutral fractional stochastic integro-differential systems
,”
Stochastic Anal. Appl.
37
,
865
(
2019
).
14.
K.
Dhanalakshmi
and
P.
Balasubramaniam
, “
Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process
,”
Stochastic Anal. Appl.
38
,
352
372
(
2019
).
15.
G. R.
Gautam
and
J.
Dabas
, “
Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses
,”
Appl. Math. Comput.
259
,
480
489
(
2016
).
16.
Y.
Guo
,
X. B.
Shu
,
Y.
Li
, and
F.
Xu
, “
The existence and Hyer-Ulam stability of solution for an impulsive Riemann–Liouville fractional stochastic differential equation with infinite delay of order 1 < β < 2
,”
Boundary Value Probl.
2019
,
59
.
17.
S.
Saravanakumar
and
P.
Balasubramaniam
, “
Non-instantaneous impulsive Hilfer fractional stochastic differential equations driven by fractional Brownian motion
,”
Stochastic Anal. Appl.
39
(
3
),
549
566
(
2020
).
18.
A.
Shukla
,
N.
Sukavanam
, and
D. N.
Pandey
, “
Approximate controllability of fractional semilinear stochastic system of order α ∈ (1, 2]
,”
Dyn. Control Syst.
23
,
679
691
(
2017
).
19.
D.
Yang
and
J.
Wang
, “
Non-instantaneous impulsive fractional-order implicit differential equations with random effects
,”
Stochastic Anal. Appl.
35
,
719
741
(
2017
).
20.
S.
Zhao
and
M.
Song
, “
Stochastic impulsive fractional differential evolution equations with infinite delay
,”
Filomat
31
,
4261
4274
(
2017
).
21.
B.
Zhu
,
L.
Lishan
, and
W.
Yonghong
, “
Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
,”
Appl. Math. Lett.
61
,
73
79
(
2016
).
22.
G.
Da Prato
and
J.
Zabczyk
,
Stochastic Equations in Infinite Dimensions
(
Cambridge University Press
,
Cambridge
,
1992
).
23.
X.
Mao
,
Stochastic Differential Equations and Applications
(
Horwood
,
Chichester
,
1997
).
24.
Y.
Mishura
,
Stochastic Calculus for Fractional Brownian Motion and Related Processes
, Lecture Notes in Mathematics Vol. 1929 (
Springer-Verlag
,
New York
,
2008
).
25.
B.
Oksendal
,
Stochastic Differential Equations: An Introduction with Applications
(
Springer-Verlag
,
Heidelberg, New York
,
2003
).
26.
L.
Gikhman
,
The Theory of Stochastic Processes III
(
Springer-Verlag
,
Berlin, Heidelberg, Switzerland
,
2007
).
27.
S.
Li
,
L.
Shu
,
X.-B.
Shu
, and
F.
Xu
, “
Existence and Hyers-Ulams stability of random impulsive stochastic functional differential equations with finite delay
,”
Stochastics
91
,
857
872
(
2019
).
28.
P.
Revathi
,
R.
Sakthivel
,
D.-Y.
Song
,
Y.
Ren
, and
P.
Zhang
, “
Existence and stability results for second-order stochastic equations driven by fractional Brownian motion
,”
Transp. Theory Stat. Phys.
42
,
299
317
(
2017
).
29.
V. B.
Kolmanvsky
and
V. R.
Nosov
,
Stability of Functional Differential Equations
(
Academic Press
,
New York
,
1986
).
30.
M.
Malik
,
A.
Kumar
, and
M.
Feckan
, “
Existence uniquness and stability of solution to second order nonlinear differential equations with non-instantaneous impulses
,”
J. King Saud Univ. Sci.
30
,
204
213
(
2018
).
31.
M.
Malik
and
A.
Kumar
, “
Existence and controllability results to second order neutral differential equation with non-instantaneous impulses
,”
J. Control Decis.
7
(
3
),
286
308
(
2019
).
32.
C.
Yue
, “
Second-order neutral impulsive stochastic evolution equation with infinite delay
,”
Adv. Differ. Equations
2014
,
1
3
.
33.
J. K.
Hale
and
K. R.
Meyer
, “
A class of functional equations of neutral type
,”
Mem. Am. Math. Soc.
76
,
1
65
(
1967
).
34.
M.
Haase
,
The Functional Calculus for Sectorial Operators, Operator Theory: Advanced and Applications
(
Birkhuser
,
Basel
,
2006
).
35.
A.
Pazy
,
Semigroups of Linear Operator and Applications to Partial Differential Equations
(
Springer
,
Berlin
,
1983
).
36.
A. M.
Samoilenko
and
N. A.
Perestyuk
,
Impulsive Differential Equations
(
World Scientific Publishers
,
Singapore
,
1995
).
37.
A.
Granas
and
J.
Dugundji
,
Fixed Point Theory
(
Springer-Verlag
,
New York
,
2003
).
38.
H.
Mönch
, “
Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces
,”
Nonlinear Anal.
4
,
985
999
(
1980
).
39.
J.
Banas
and
K.
Goebel
,
Measure of Noncompactness in Banach Space
(
Mercel Dekker
,
New York
,
1980
).
40.
R.
Cont
and
P.
Tankov
,
Financial Modelling With Jump Process
, Financial Mathematical Series (
Taylor & Francis
,
2004
), Vol. 65, pp.
50
56
.
41.
I.
Stamova
,
Applied Impulsive Mathematical Models
(
Springer, International publishing
,
Switzerland
,
2016
).
42.
C. C.
Travis
and
G. F.
Webb
, “
Cosine families and abstract nonlinear second order differential equation
,”
Acta Mathematica Hungarica.
32
,
75
96
(
1978
).
You do not currently have access to this content.