In this paper, we consider the regularity of Wong–Zakai approximations of the non-autonomous stochastic degenerate parabolic equations with X-elliptic operators. We first establish the pullback random attractors for the random degenerate parabolic equations with a general diffusion. Then, we prove the convergence of solutions and the upper semi-continuity of random attractors of the Wong–Zakai approximation equations in Lp(DN) ∩ H.
REFERENCES
1.
L.
Arnold
, Random Dynamical
Systems
(Springer-Verlag
,
Berlin
, 1998
).2.
Q.
Chang
, D.
Li
, and C.
Sun
, “Dynamics for a
stochastic degenerate parabolic equation
,” Comput.
Math. Appl.
77
, 2407
–2431
(2019
).3.
E.
DiBenedetto
, Degenerate
Parabolic Equations
(Springer-Verlag
, New
York
, 1993
).4.
B.
Franchi
and E.
Lanconelli
, “Hölder
regularity theorem for a class of linear nonuniformly elliptic operators
with measurable coefficients
,” Ann. Scuola Norm.
Sup. Pisa Cl. Sci.
10
(4
), 523
–541
(1983
).5.
N.
Garofalo
and D.-M.
Nhieu
, “Isoperimetric and
Sobolev inequalities for Carnot-Carathéodory spaces and the existence of
minimal surfaces
,” Commun. Pure Appl. Math.
49
, 1081
–1144
(1996
).6.
A.
Gu
, K.
Lu
, and B.
Wang
, “Asymptotic behavior
of random Navier-Stokes equations driven by Wong-Zakai
approximations
,” Discrete Contin. Dyn.
Syst.
39
, 185
–218
(2019
).7.
C. E.
Gutiérrez
and E.
Lanconelli
, “Maximum
principle, nonhomogeneous Harnack inequality, and Liouville theorems for
X-elliptic operators
,” Commun.
Partial Diffe. Equations
28
, 1833
–1862
(2003
).8.
I.
Gyöngy
and A.
Shmatkov
, “Rate of
convergence of Wong-Zakai approximations for stochastic partial differential
equations
,” Appl. Math. Optim.
54
, 315
–341
(2006
).9.
T.
Jiang
and X.
Liu
, “Approximation for
random stable manifolds under multiplicative correlated
noises
,” Discrete Contin. Dyn. Syst., Ser.
B
21
, 3163
–3174
(2016
).10.
D.
Kelly
and I.
Melbourne
, “Smooth
approximation of stochastic differential equations
,”
Ann. Probab.
44
, 479
–520
(2016
).11.
A. E.
Kogoj
and E.
Lanconelli
, “Liouville
theorem for X-elliptic operators
,”
Nonlinear Anal.
70
, 2974
–2985
(2009
).12.
A. E.
Kogoj
and S.
Sonner
, “Attractors met
X-elliptic operators
,” J. Math.
Anal. Appl.
420
, 407
–434
(2014
).13.
M. R.
Lancia
and M. V.
Marchi
, “Liouville theorems
for Fuchsian-type operators on the Heisenberg group
,”
Z. Anal. Anwend.
16
, 653
–668
(1997
).14.
M. R.
Lancia
and M. V.
Marchi
, “Harnack
inequalities for nonsymmetric operators of Hörmander type with discontinuous
coefficients
,” Adv. Math. Sci. Appl.
7
, 833
–857
(1997
).15.
E.
Lanconelli
and A. E.
Kogoj
,
“X-elliptic operators and
X-control distances
,” Ricerche
Mat.
49
, 223
–243
(2000
).16.
D.
Li
and C.
Sun
, “Attractors for a class
of semi-linear degenerate parabolic equations with critical
exponent
,” J. Evol. Equations
16
, 997
–1015
(2016
).17.
D.
Li
, C.
Sun
, and Q.
Chang
, “Global attractor for
degenerate damped hyperbolic equations
,” J. Math.
Anal. Appl.
453
, 1
–19
(2017
).18.
J. L.
Lions
, Quelques Methodes de
Resolution des Problemes aux Limites Non Lineaires
(Dunod
,
Paris
, 1969
).19.
G.
Liu
and W.
Zhao
, “Regularity of
Wong-Zakai approximation for non-autonomous stochastic quasi-linear
parabolic equation on
,” Electron. Res.
Arch.
29
, 3655
–3686
(2021
).20.
K.
Lu
and B.
Wang
, “Wong-Zakai
approximations and long term behavior of stochastic partial differential
equations
,” J. Dyn. Differ. Equations
31
, 1341
–1371
(2019
).21.
T.
Nakayama
and S.
Tappe
, “Wong-Zakai
approximations with convergence rate for stochastic partial differential
equations
,” Stoch. Anal. Appl.
36
, 832
–857
(2018
).22.
L.
Saloff-Coste
and D. W.
Stroock
, “Opérateurs
uniformément sous-elliptiques sur les groupes de Lie
,”
J. Funct. Anal.
98
, 97
–121
(1991
).23.
J.
Shen
and K.
Lu
, “Wong-Zakai
approximations and center manifolds of stochastic differential
equations
,” J. Differ. Equations
263
, 4929
–4977
(2017
).24.
J.
Shen
, J.
Zhao
, K.
Lu
, and B.
Wang
, “The Wong-Zakai
approximations of invariant manifolds and foliations for stochastic
evolution equations
,” J. Differ. Equations
266
, 4568
–4623
(2019
).25.
D. W.
Stroock
and S. R. S.
Varadhan
, “On the support of
diffusion processes with applications to the strong maximum
principle
,” in Proceedings 6th Berkeley.
Symposium on Mathematical Statistics and Probability
(Univ. California, Berkeley, Calif.
,
1972
), Vol. 3, pp.
333
–359
.26.
Y.
Sun
and H.
Gao
, “Wong-Zakai
approximations and attractors for fractional stochastic reaction-diffusion
equations on unbounded domains
,” J. Appl. Anal.
Comput.
10
, 2338
–2361
(2020
).27.
H. J.
Sussmann
, “An interpretation
of stochastic differential equations as ordinary differential equations
which depend on the sample point
,” Bull. Am. Math.
Soc.
83
, 296
–298
(1977
).28.
H. J.
Sussmann
, “On the gap
between deterministic and stochastic ordinary differential
equations
,” Ann. Probab.
6
, 19
–41
(1978
).29.
R. M.
Temam
, Infinite-Dimensional
Dynamical Systems in Mechanics and Physics
(Springer-Verlag
, New
York
, 1997
).30.
G.
Tralli
and F.
Uguzzoni
, “Wiener criterion
for X-elliptic operators
,” J.
Differ. Equations
259
, 6510
–6527
(2015
).31.
F.
Uguzzoni
, “Estimates of the
Green function for X-elliptic operators
,”
Math. Ann.
361
, 169
–190
(2015
).32.
B.
Wang
, “Sufficient and
necessary criteria for existence of pullback attractors for non-compact
random dynamical systems
,” J. Differ.
Equations
253
, 1544
–1583
(2012
).33.
B.
Wang
, “Existence and upper
semicontinuity of attractors for stochastic equations with deterministic
non-autonomous terms
,” Stoch. Dyn.
14
, 1450009
(2014
).34.
X.
Wang
, K.
Lu
, and B.
Wang
, “Wong-Zakai
approximations and attractors for stochastic reaction-diffusion equations on
unbounded domains
,” J. Differ. Equations
264
, 378
–424
(2018
).35.
E. W.
Wong
and M. M.
Zakai
, “On the relation
between ordinary and stochastic differential equations
,”
Internat. J. Engrg. Sci.
3
, 213
–229
(1965
).36.
E.
Wong
and M.
Zakai
, “On the convergence
of ordinary integrals to stochastic integrals
,” Ann.
Math. Stat..
36
, 1560
–1564
(1965
).37.
W.
Zhao
, “Random dynamics of
non-autonomous semi-linear degenerate parabolic equations on
driven by an unbounded additive
noise
,” Discrete Contin. Dyn. Syst., Ser. B
23
, 2499
–2526
(2018
).38.
W.
Zhao
, Y.
Zhang
, and S.
Chen
, “Higher-order
Wong-Zakai approximations of stochastic reaction-diffusion equations on
,” Physica
D
401
, 132147
(2020
).39.
W.
Zhao
and Y.
Zhang
, “High-order
Wong-Zakai approximations for non-autonomous stochastic
p-Laplacian equations on
,” Commun. Pure
Appl. Anal.
20
, 243
–280
(2021
).40.
W.
Zhao
, “Wong-Zakai
approximations of the non-autonomous stochastic FitzHugh-Nagumo system on
in higher regular spaces
,”
J. Math. Phys.
62
, 081501
(2021
).© 2023 Author(s). Published under an exclusive license by AIP
Publishing.
2023
Author(s)
You do not currently have access to this content.