In this paper, we consider the regularity of Wong–Zakai approximations of the non-autonomous stochastic degenerate parabolic equations with X-elliptic operators. We first establish the pullback random attractors for the random degenerate parabolic equations with a general diffusion. Then, we prove the convergence of solutions and the upper semi-continuity of random attractors of the Wong–Zakai approximation equations in Lp(DN) ∩ H.

1.
L.
Arnold
,
Random Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1998
).
2.
Q.
Chang
,
D.
Li
, and
C.
Sun
, “
Dynamics for a stochastic degenerate parabolic equation
,”
Comput. Math. Appl.
77
,
2407
2431
(
2019
).
3.
E.
DiBenedetto
,
Degenerate Parabolic Equations
(
Springer-Verlag
,
New York
,
1993
).
4.
B.
Franchi
and
E.
Lanconelli
, “
Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
,”
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
10
(
4
),
523
541
(
1983
).
5.
N.
Garofalo
and
D.-M.
Nhieu
, “
Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces
,”
Commun. Pure Appl. Math.
49
,
1081
1144
(
1996
).
6.
A.
Gu
,
K.
Lu
, and
B.
Wang
, “
Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations
,”
Discrete Contin. Dyn. Syst.
39
,
185
218
(
2019
).
7.
C. E.
Gutiérrez
and
E.
Lanconelli
, “
Maximum principle, nonhomogeneous Harnack inequality, and Liouville theorems for X-elliptic operators
,”
Commun. Partial Diffe. Equations
28
,
1833
1862
(
2003
).
8.
I.
Gyöngy
and
A.
Shmatkov
, “
Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations
,”
Appl. Math. Optim.
54
,
315
341
(
2006
).
9.
T.
Jiang
and
X.
Liu
, “
Approximation for random stable manifolds under multiplicative correlated noises
,”
Discrete Contin. Dyn. Syst., Ser. B
21
,
3163
3174
(
2016
).
10.
D.
Kelly
and
I.
Melbourne
, “
Smooth approximation of stochastic differential equations
,”
Ann. Probab.
44
,
479
520
(
2016
).
11.
A. E.
Kogoj
and
E.
Lanconelli
, “
Liouville theorem for X-elliptic operators
,”
Nonlinear Anal.
70
,
2974
2985
(
2009
).
12.
A. E.
Kogoj
and
S.
Sonner
, “
Attractors met X-elliptic operators
,”
J. Math. Anal. Appl.
420
,
407
434
(
2014
).
13.
M. R.
Lancia
and
M. V.
Marchi
, “
Liouville theorems for Fuchsian-type operators on the Heisenberg group
,”
Z. Anal. Anwend.
16
,
653
668
(
1997
).
14.
M. R.
Lancia
and
M. V.
Marchi
, “
Harnack inequalities for nonsymmetric operators of Hörmander type with discontinuous coefficients
,”
Adv. Math. Sci. Appl.
7
,
833
857
(
1997
).
15.
E.
Lanconelli
and
A. E.
Kogoj
, “
X-elliptic operators and X-control distances
,”
Ricerche Mat.
49
,
223
243
(
2000
).
16.
D.
Li
and
C.
Sun
, “
Attractors for a class of semi-linear degenerate parabolic equations with critical exponent
,”
J. Evol. Equations
16
,
997
1015
(
2016
).
17.
D.
Li
,
C.
Sun
, and
Q.
Chang
, “
Global attractor for degenerate damped hyperbolic equations
,”
J. Math. Anal. Appl.
453
,
1
19
(
2017
).
18.
J. L.
Lions
,
Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires
(
Dunod
,
Paris
,
1969
).
19.
G.
Liu
and
W.
Zhao
, “
Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on R N
,”
Electron. Res. Arch.
29
,
3655
3686
(
2021
).
20.
K.
Lu
and
B.
Wang
, “
Wong-Zakai approximations and long term behavior of stochastic partial differential equations
,”
J. Dyn. Differ. Equations
31
,
1341
1371
(
2019
).
21.
T.
Nakayama
and
S.
Tappe
, “
Wong-Zakai approximations with convergence rate for stochastic partial differential equations
,”
Stoch. Anal. Appl.
36
,
832
857
(
2018
).
22.
L.
Saloff-Coste
and
D. W.
Stroock
, “
Opérateurs uniformément sous-elliptiques sur les groupes de Lie
,”
J. Funct. Anal.
98
,
97
121
(
1991
).
23.
J.
Shen
and
K.
Lu
, “
Wong-Zakai approximations and center manifolds of stochastic differential equations
,”
J. Differ. Equations
263
,
4929
4977
(
2017
).
24.
J.
Shen
,
J.
Zhao
,
K.
Lu
, and
B.
Wang
, “
The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations
,”
J. Differ. Equations
266
,
4568
4623
(
2019
).
25.
D. W.
Stroock
and
S. R. S.
Varadhan
, “
On the support of diffusion processes with applications to the strong maximum principle
,” in
Proceedings 6th Berkeley. Symposium on Mathematical Statistics and Probability
(
Univ. California, Berkeley, Calif.
,
1972
), Vol. 3, pp.
333
359
.
26.
Y.
Sun
and
H.
Gao
, “
Wong-Zakai approximations and attractors for fractional stochastic reaction-diffusion equations on unbounded domains
,”
J. Appl. Anal. Comput.
10
,
2338
2361
(
2020
).
27.
H. J.
Sussmann
, “
An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point
,”
Bull. Am. Math. Soc.
83
,
296
298
(
1977
).
28.
H. J.
Sussmann
, “
On the gap between deterministic and stochastic ordinary differential equations
,”
Ann. Probab.
6
,
19
41
(
1978
).
29.
R. M.
Temam
,
Infinite-Dimensional Dynamical Systems in Mechanics and Physics
(
Springer-Verlag
,
New York
,
1997
).
30.
G.
Tralli
and
F.
Uguzzoni
, “
Wiener criterion for X-elliptic operators
,”
J. Differ. Equations
259
,
6510
6527
(
2015
).
31.
F.
Uguzzoni
, “
Estimates of the Green function for X-elliptic operators
,”
Math. Ann.
361
,
169
190
(
2015
).
32.
B.
Wang
, “
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems
,”
J. Differ. Equations
253
,
1544
1583
(
2012
).
33.
B.
Wang
, “
Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms
,”
Stoch. Dyn.
14
,
1450009
(
2014
).
34.
X.
Wang
,
K.
Lu
, and
B.
Wang
, “
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains
,”
J. Differ. Equations
264
,
378
424
(
2018
).
35.
E. W.
Wong
and
M. M.
Zakai
, “
On the relation between ordinary and stochastic differential equations
,”
Internat. J. Engrg. Sci.
3
,
213
229
(
1965
).
36.
E.
Wong
and
M.
Zakai
, “
On the convergence of ordinary integrals to stochastic integrals
,”
Ann. Math. Stat..
36
,
1560
1564
(
1965
).
37.
W.
Zhao
, “
Random dynamics of non-autonomous semi-linear degenerate parabolic equations on R N driven by an unbounded additive noise
,”
Discrete Contin. Dyn. Syst., Ser. B
23
,
2499
2526
(
2018
).
38.
W.
Zhao
,
Y.
Zhang
, and
S.
Chen
, “
Higher-order Wong-Zakai approximations of stochastic reaction-diffusion equations on R N
,”
Physica D
401
,
132147
(
2020
).
39.
W.
Zhao
and
Y.
Zhang
, “
High-order Wong-Zakai approximations for non-autonomous stochastic p-Laplacian equations on R N
,”
Commun. Pure Appl. Anal.
20
,
243
280
(
2021
).
40.
W.
Zhao
, “
Wong-Zakai approximations of the non-autonomous stochastic FitzHugh-Nagumo system on R N in higher regular spaces
,”
J. Math. Phys.
62
,
081501
(
2021
).
You do not currently have access to this content.