We study the universality and membership problems for gate sets consisting of a finite number of quantum gates. Our approach relies on the techniques from compact Lie group theory. We also introduce an auxiliary problem called the subgroup universality problem, which helps in solving some instances of the membership problem and can be of interest on its own. The resulting theorems are mainly formulated in terms of centralizers and the adjoint representations of a given set of quantum gates.

1.
A. Y.
Kitaev
,
A.
Shen
,
M. N.
Vyalyi
, and
M. N.
Vyalyi
,
Classical and Quantum Computation
, Graduate Studies in Mathematics (
American Mathematical Society
,
2002
).
2.
R. K.
Brylinski
and
G.
Chen
,
Mathematics of Quantum Computation
, Computational Mathematics (
CRC Press
,
2002
).
3.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
,
10th Anniversary ed.
(
Cambridge University Press
,
2010
).
4.
Z.
Zimborás
and
M.
Oszmaniec
, “
Universal extensions of restricted classes of quantum operations
,”
Phys. Rev. Lett.
119
,
220502
(
2017
).
5.
M.
Kuranishi
, “
On everywhere dense imbedding of free groups in Lie groups
,”
Nagoya Math. J.
2
,
63
71
(
1951
).
6.
P. O.
Boykin
,
T.
Mor
,
M.
Pulver
,
V.
Roychowdhury
, and
F.
Vatan
, “
On universal and fault-tolerant quantum computing: A novel basis and a new constructive proof of universality for Shor’s basis
,” in
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039)
(
IEEE
,
1999
), pp.
486
494
.
7.
D.
Aharonov
and
M.
Ben-Or
, “
Fault-tolerant quantum computation with constant error rate
,”
SIAM J. Comput.
38
(
4
),
1207
1282
(
2008
).
8.
A. Y.
Kitaev
, “
Quantum computations: Algorithms and error correction
,”
Russian Math. Surv.
52
(
6
),
1191
(
1997
).
9.
S.
Adam
and
K.
Karnas
, “
Universality of single-qudit gates
,”
Ann. Henri Poincaré
18
(
11
),
3515
3552
(
2017
).
10.
A.
Sawicki
and
K.
Karnas
, “
Criteria for universality of quantum gates
,”
Phys. Rev. A
95
,
062303
(
2017
).
11.
K.
Karnas
and
A.
Sawicki
, “
When is a product of finite order qubit gates of infinite order?
,”
J. Phys. A: Math. Theor.
51
(
7
),
075305
(
2018
).
12.
Y.
Bromberg
,
Y.
Lahini
,
R.
Morandotti
, and
Y.
Silberberg
, “
Quantum and classical correlations in waveguide lattices
,”
Phys. Rev. Lett.
102
(
25
),
253904
(
2009
).
13.
A.
Politi
,
M. J.
Cryan
,
J. G.
Rarity
,
S.
Yu
, and
J. L.
O’Brien
, “
Silica-on-silicon waveguide quantum circuits
,”
Science
320
(
5876
),
646
649
(
2008
).
14.
M.
Reck
,
A.
Zeilinger
,
H. J.
Bernstein
, and
P.
Bertani
, “
Experimental realization of any discrete unitary operator
,”
Phys. Rev. Lett.
73
,
58
61
(
1994
).
15.
A.
Sawicki
, “
Universality of beamsplitters
,”
Quantum Inf. Comput.
16
,
291
312
(
2016
).
16.
M.
Oszmaniec
,
J.
Gutt
, and
M.
Kuś
, “
Classical simulation of fermionic linear optics augmented with noisy ancillas
,”
Phys. Rev. A
90
,
020302
(
2014
).
17.
Z.
Holmes
,
K.
Sharma
,
M.
Cerezo
, and
P. J.
Coles
, “
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
,”
PRX Quantum
3
(1)
,
010313
(
2022
).
18.
R.
Zeier
and
T.
Schulte-Herbrüggen
, “
Symmetry principles in quantum systems theory
,”
J. Math. Phys.
52
(
11
),
113510
(
2011
).
19.
R.
Zeier
and
Z.
Zimborás
, “
On squares of representations of compact lie algebras
,”
J. Math. Phys.
56
(
8
),
081702
(
2015
).
20.
Z.
Zimborás
,
R.
Zeier
,
T.
Schulte-Herbrueggen
, and
D.
Burgarth
, “
Symmetry criteria for quantum simulability of effective interactions
,”
Phys. Rev. A
92
,
042309
(
2015
).
21.
E.
Jeandel
, “
Universality in quantum computation
,” in
Automata, Languages and Programming
, edited by
J.
Díaz
,
J.
Karhumäki
,
A.
Lepistö
, and
D.
Sannella
(
Springer
,
Berlin, Heidelberg
,
2004
), pp.
793
804
.
22.
F.
Silva Leite
, “
Bounds on the order of generation of SO(n, R) by one-parameter subgroups
,”
Rocky Mountain J. Math.
21
(
2
),
879
911
(
1991
).
23.
V.
Jurdjevic
and
H. J.
Sussmann
, “
Control systems on lie groups
,”
J. Differ. Equ.
12
(
2
),
313
329
(
1972
).
24.
Z.
Brakerski
,
D.
Sharma
, and
G.
Weissenberg
, “
Unitary subgroup testing
,” arXiv:2104.03591 (
2021
).
25.
J. E.
Pascoe
, “
An elementary method to compute the algebra generated by some given matrices and its dimension
,”
Linear Algebra Appl.
571
,
132
142
(
2019
).
26.
L.
Babai
,
R.
Beals
, and
D.
Rockmore
, “
Deciding finiteness of matrix groups in deterministic polynomial time
,” in
ISSAC ’93
,
1993
.
27.
M. H.
Freedman
,
A.
Kitaev
, and
J.
Lurie
, “
Diameters of homogeneous spaces
,”
Math. Res. Lett.
10
(
1
),
11
20
(
2003
); arXiv:quant-ph/0209113 MR:1960119. Zbl:1029.22031.
28.
S.
Adam
,
L.
Mattioli
, and
Z.
Zimborás
, “
Universality verification for a set of quantum gates
,”
Phys. Rev. A
105
(
5
),
052602
(
2022
).
29.
Y.
Wang
,
Z.
Hu
,
B. C.
Sanders
, and
S.
Kais
, “
Qudits and high-dimensional quantum computing
,”
Front. Phys.
8
,
589504
(
2020
).
30.
M.
Ise
,
M.
Takeuchi
, and
K.
Nomizu
,
Lie Groups I. Lie Groups
(
American Mathematical Society
,
1991
).
31.
B. C.
Hall
,
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
, Graduate Texts in Mathematics (
Springer
,
New York
,
2015
), Vol. 222.
32.
G. D.
Mostow
, “
The extensibility of local lie groups of transformations and groups on surfaces
,”
Ann. Math.
52
(
3
),
606
636
(
1950
).
33.
N.
Bourbaki
,
Lie Groups and Lie Algebrasin
, Elements of Mathematics (
Springer
,
Berlin, Heidelberg
,
2004
), Chaps. 7-9, Number Pt. 7-9.
34.
D.
Grinberg
, https://math.stackexchange.com/users/586/darij grinberg. Kernel of restriction of bilinear function to some subspace. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/3550645 (version: 2020-02-18).
35.
E.
Herrington
, https://math.stackexchange.com/users/657578/elliot herrington. Reference request for studying bilinear form. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/4261374 (version: 2021-09-27).
36.
A.
Derdzinski
, “
Zeros of conformal fields in any metric signature
,”
Classical Quantum Gravity
28
(
7
),
075011
(
2011
).
37.
C. W.
Curtis
and
I.
Reiner
,
Representation Theory of Finite Groups and Associative Algebras
(
A Wiley-interscience publication, Interscience Publishers
,
1962
).
You do not currently have access to this content.