We present a rigorous but elementary index theory for a class of one-dimensional systems of interacting (and possibly disordered) fermions with U(1)Z2 symmetry defined on the infinite chain. The class includes the Su–Schrieffer–Heeger (SSH) model [Su et al., “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1698 (1979); Su et al., “Soliton excitations in polyacetylene,” Phys. Rev. B 22, 2099 (1983); and Asbóth et al., A Short Course on Topological Insulators: Band-Structure Topology and Edge States in One and Two Dimensions, Lecture Notes in Physics (Springer, 2016)] as a special case. For any locally unique gapped (fixed-charge) ground state of a model in the class, we define a Z2 index in terms of the sign of the expectation value of the local twist operator. We prove that the index is topological in the sense that it is invariant under continuous modification of models in the class with a locally unique (fixed-charge) gapped ground state. This establishes that any path of models in the class that connects the two extreme cases of the SSH model must go through a phase transition. Our rigorous Z2 classification is believed to be optimal for the class of models considered here. We also show an interesting duality of the index and prove that any topologically nontrivial model in the class has a gapless edge excitation above the ground state when defined on the half-infinite chain. The results extend to other classes of models, including the extended Hubbard model. Our strategy to focus on the expectation value of local unitary operators makes the theory intuitive and conceptually simple. This paper also contains a careful discussion about the notion of unique gapped ground states of a particle system on the infinite chain. (There are two lecture videos in which the main results of this paper are discussed [H. Tasaki, “Rigorous index theory for one-dimensional interacting topological insulators: A brief introduction,” online lecture (21:41), November, 2021, seehttps://www.gakushuin.ac.jp/~881791/OL/#Index1DTI2021S and https://youtu.be/ypGVb3eYrpg and H. Tasaki, “Rigorous index theory for one-dimensional interacting topological insulators: With a pedagogical introduction to the topological phase transition in the SSH model,” online lecture (49:07), November, 2021, see https://www.gakushuin.ac.jp/~881791/OL/#Index1DTI2021L and https://youtu.be/yxZYOevV2Y].

1.
H.
Tasaki
, “
Rigorous index theory for one-dimensional interacting topological insulators: A brief introduction
,” online lecture (21:41), November, 2021, see https://www.gakushuin.ac.jp/~881791/OL/#Index1DTI2021S and https://youtu.be/ypGVb3eYrpg.
2.
H.
Tasaki
, “
Rigorous index theory for one-dimensional interacting topological insulators: With a pedagogical introduction to the topological phase transition in the SSH model
,” online lecture (49:07), November, 2021, see https://www.gakushuin.ac.jp/~881791/OL/#Index1DTI2021L and https://youtu.be/yxZYOevV2Y.
3.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
); arXiv:1002.3895.
4.
S.
Ryu
,
A. P.
Schnyder
,
A.
Furusaki
, and
A. W. W.
Ludwig
, “
Topological insulators and superconductors: Tenfold way and dimensional hierarchy
,”
New J. Phys.
12
,
065010
(
2010
); arXiv:0912.2157v2.
5.
A.
Kitaev
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
22
30
(
2009
); arXiv:0901.2686.
6.
R.
Shankar
, “
Topological insulators—A review
,” arXiv:1804.06471 (
2018
).
7.
E.
Prodan
and
H.
Schulz-Baldes
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(
Springer
,
2016
).
8.
H.
Katsura
and
T.
Koma
, “
The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors
,”
J. Math. Phys.
59
,
031903
(
2018
); arXiv:1611.01928.
9.
S.
Rachel
, “
Interacting topological insulators: A review
,”
Rep. Prog. Phys.
81
,
116501
(
2018
); arXiv:1804.10656.
10.
Y.
Hatsugai
, “
Quantized Berry phases as a local order parameter of a quantum liquid
,”
J. Phys. Soc. Jpn.
75
,
123601
(
2006
).
11.
H.
Guo
and
S.-Q.
Shen
, “
Topological phase in a one-dimensional interacting fermion system
,”
Phys. Rev. B
84
,
195107
(
2011
); arXiv:1108.4996.
12.
L.
Fidkowski
and
A.
Kitaev
, “
Topological phases of fermions in one dimension
,”
Phys. Rev. B
83
,
075103
(
2011
); arXiv:1008.4138.
13.
K.
Shiozaki
,
H.
Shapourian
, and
S.
Ryu
, “
Many-body topological invariants in fermionic symmetry protected topological phases: Cases of point group symmetries
,”
Phys. Rev. B
95
,
205139
(
2017
); arXiv:1609.05970.
14.
S. R.
Manmana
,
A. M.
Essin
,
R. M.
Noack
, and
V.
Gurarie
, “
Topological invariants and interacting one-dimensional fermionic systems
,”
Phys. Rev. B
86
,
205119
(
2012
); arXiv:1205.5095.
15.
D.
Wang
,
S.
Xu
,
Y.
Wang
, and
C.
Wu
, “
Detecting edge degeneracy in interacting topological insulators through entanglement entropy
,”
Phys. Rev. B
91
,
115118
(
2015
); arXiv:1405.2043.
16.
L.
Stehouwer
, “
Interacting SPT phases are not morita invariant
,”
Lett. Math. Phys.
112
,
64
(
2022
); arXiv:2110.07408v1.
17.
A.
Kapustin
,
R.
Thorngren
,
A.
Turzillo
, and
Z.
Wang
, “
Fermionic symmetry protected topological phases and cobordisms
,”
J. High Energy Phys.
2015
,
1
21
.
18.
Y.-M.
Lu
,
Y.
Ran
, and
M.
Oshikawa
, “
Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice
,”
Ann. Phys.
413
,
168060
(
2020
); arXiv:1705.09298.
19.
A.
Matsugatani
,
Y.
Ishiguro
,
K.
Shiozaki
, and
H.
Watanabe
, “
Universal relation among many-body chern number, rotation symmetry, and filling
,”
Phys. Rev. Lett.
120
,
096601
(
2018
); arXiv:1710.07012.
20.
S.
Ono
,
L.
Trifunovic
, and
H.
Watanabe
, “
Difficulties in operator-based formulation of the bulk quadrupole moment
,”
Phys. Rev. B
100
,
245133
(
2019
); arXiv:1902.07508.
21.
B.
Kang
,
K.
Shiozaki
, and
G. Y.
Cho
, “
Many-body order parameters for multipoles in solids
,”
Phys. Rev. B
100
,
245134
(
2019
); arXiv:1812.06999.
22.
W. A.
Wheeler
,
L. K.
Wagner
, and
T. L.
Hughes
, “
Many-body electric multipole operators in extended systems
,”
Phys. Rev. B
100
,
245135
(
2019
); arXiv:1812.06990.
23.
M.
Nakamura
,
S.
Masuda
, and
S.
Nishimoto
, “
Characterization of topological insulators based on the electronic polarization with spiral boundary conditions
,”
Phys. Rev. B
104
,
L121114
(
2021
); arXiv:2109.02242.
24.
J. E.
Avron
and
R.
Seiler
, “
Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians
,”
Phys. Rev. Lett.
54
,
259
262
(
1985
).
25.
S.
Bachmann
,
A.
Bols
,
W.
De Roeck
, and
M.
Fraas
, “
A many-body index for quantum charge transport
,”
Commun. Math. Phys.
375
,
1249
1272
(
2019
); arXiv:1810.07351.
26.
S.
Bachmann
,
A.
Bols
,
W.
De Roeck
, and
M.
Fraas
, “
Rational indices for quantum ground state sectors
,”
J. Math. Phys.
62
,
011901
(
2021
); arXiv:2001.06458.
27.
C.
Bourne
and
H.
Schulz-Baldes
, “
On Z2-indices for ground states of fermionic chains
,”
Rev. Math. Phys.
32
,
2050028
(
2020
); arXiv:1905.11556v2.
28.
T.
Matsui
, “
Split property and fermionic string order
,” arXiv:2003.13778v2 (
2020
).
29.
C.
Bourne
and
Y.
Ogata
, “
The classification of symmetry protected topological phases of one-dimensional fermion systems
,”
Forum Math., Sigma
9
,
E25
(
2021
).
30.
Y.
Ogata
, “
An invariant of symmetry protected topological phases with on-site finite group symmetry for two-dimensional Fermion systems
,”
Comm. Math. Phys.
395
,
405
457
(
2022
); arXiv:2110.04672.
31.
S.
Bachmann
and
B.
Nachtergaele
, “
On gapped phases with a continuous symmetry and boundary operators
,”
J. Stat. Phys.
154
,
91
112
(
2014
); arXiv:1307.0716.
32.
H.
Tasaki
, “
Topological phase transition and Z2 index for S = 1 quantum spin chains
,”
Phys. Rev. Lett.
121
,
140604
(
2018
); arXiv:1804.04337.
33.
Y.
Ogata
, “
A Z2-index of symmetry protected topological phases with time reversal symmetry for quantum spin chains
,”
Commun. Math. Phys.
374
,
705
734
(
2020
); arXiv:1810.01045.
34.
Y.
Ogata
, “
A Z2-index of symmetry protected topological phases with reflection symmetry for quantum spin chains
,”
Commun. Math. Phys.
385
,
1245
1272
(
2021
); arXiv:1904.01669.
35.
Y.
Ogata
,
Y.
Tachikawa
, and
H.
Tasaki
, “
General Lieb–Schultz–Mattis type theorems for quantum spin chains
,”
Commun. Math. Phys.
385
,
79
99
(
2021
); arXiv:2004.06458.
36.
Y.
Ogata
, “
A H3(G,T)-valued index of symmetry protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems
,”
Forum of Mathematics, Pi
9
,
e13
(
2021
); arXiv:2101.00426.
37.
N.
Sopenko
, “
An index for two-dimensional SPT states
,”
J. Math. Phys.
62
,
111901
(
2021
); arXiv:2101.00801.
38.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
(
1979
).
39.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Soliton excitations in polyacetylene
,”
Phys. Rev. B
22
,
2099
(
1983
).
40.
J. K.
Asbóth
,
L.
Oroszlány
, and
A.
Pályi
,
A Short Course on Topological Insulators: Band-Structure Topology and Edge States in One and Two Dimensions
, Lecture Notes in Physics (
Springer
,
2016
).
41.
J.
Zak
, “
Berry’s phase for energy bands in solids
,”
Phys. Rev. Lett.
62
,
2747
2750
(
1989
).
42.
R.
Resta
, “
Macroscopic polarization in crystalline dielectrics: The geometric phase approach
,”
Rev. Mod. Phys.
66
,
899
(
1994
).
43.
R.
Resta
, “
The quantum-mechanical position operator in extended systems
,”
Phys. Rev. Lett.
80
,
1800
(
1998
); arXiv:cond-mat/9709306v1.
44.
H.
Watanabe
and
M.
Oshikawa
, “
Inequivalent Berry phases for the bulk polarization
,”
Phys. Rev. X
8
,
021065
(
2018
).
45.
D.
Bohm
, “
Note on a theorem of Bloch concerning possible causes of superconductivity
,”
Phys. Rev.
75
,
502
(
1949
).
46.
H.
Watanabe
, “
A proof of the Bloch theorem for lattice models
,”
J. Stat. Phys.
177
,
717
726
(
2019
).
47.
E.
Lieb
,
T.
Schultz
, and
D.
Mattis
, “
Two soluble models of an antiferromagnetic chain
,”
Ann. Phys.
16
,
407
466
(
1961
).
48.
M.
Yamanaka
,
M.
Oshikawa
, and
I.
Affleck
, “
Non-perturbative approach to Luttinger’s theorem in one dimension
,”
Phys. Rev. Lett.
79
,
1110
(
1997
); arXiv:cond-mat/9701141.
49.
I.
Affleck
and
E. H.
Lieb
, “
A proof of part of Haldane’s conjecture on spin chains
,”
Lett. Math. Phys.
12
,
57
69
(
1986
).
50.
H.
Tasaki
, “
Lieb–Schultz–Mattis theorem with a local twist for general one-dimensional quantum systems
,”
J. Stat. Phys.
170
,
653
671
(
2018
); arXiv:1708.05186.
51.
M.
Nakamura
and
S.
Todo
, “
Order parameter to characterize valence-bond-solid states in quantum spin chains
,”
Phys. Rev. Lett.
89
,
077204
(
2002
); arXiv:cond-mat/0112377.
52.
H.
Tasaki
,
Physics and Mathematics of Quantum Many-Body Systems
, Graduate Texts in Physics (
Springer
,
2020
).
53.
H.
Tasaki
, “
The Lieb–Schultz–Mattis theorem: A topological point of view
,” in
The Physics and Mathematics of Elliott Lieb
, edited by
R. L.
Frank
,
A.
Laptev
,
M.
Lewin
, and
R.
Seiringer
(
European Mathematical Society Press
,
2022
), Vol. 2, pp.
405
446
.
54.
B.
Nachtergaele
, “
From Lieb-Robinson bounds to automorphic equivalence
,” in
The Physics and Mathematics of Elliott Lieb
, edited by
R. L.
Frank
,
A.
Laptev
,
M.
Lewin
, and
R.
Seiringer
(
European Mathematical Society Press
,
2022
), Vol. 2, pp.
79
92
.
55.
B.
Nachtergaele
and
R.
Sims
, “
Lieb-Robinson bounds and the exponential clustering theorem
,”
Commun. Math. Phys.
265
,
119
130
(
2006
); arXiv:math-ph/0506030.
56.
M. B.
Hastings
and
T.
Koma
, “
Spectral gap and exponential decay of correlations
,”
Commun. Math. Phys.
265
,
781
804
(
2006
); arXiv:math-ph/0507008.
57.
M. R.
Zirnbauer
, “
Particle-hole symmetries in condensed matter
,”
J. Math. Phys.
62
,
021101
(
2021
); arXiv:2004.07107v1.
58.
P.
Sompet
,
S.
Hirthe
,
D.
Bourgund
,
T.
Chalopin
,
J.
Bibo
,
J.
Koepsell
,
P.
Bojović
,
R.
Verresen
,
F.
Pollmann
,
G.
Salomon
,
C.
Gross
,
T. A.
Hilker
, and
I.
Bloch
, “
Realising the symmetry-protected Haldane phase in Fermi-Hubbard ladders
,”
Nature
606
,
484
488
(
2022
).
59.
Y.
Fuji
,
F.
Pollmann
, and
M.
Oshikawa
, “
Distinct trivial phases protected by a point-group symmetry in quantum spin chains
,”
Phys. Rev. Lett.
114
,
177204
(
2015
); arXiv:1409.8616.
60.
D. J.
Thouless
, “
Quantization of particle transport
,”
Phys. Rev. B
27
,
6083
(
1983
).
61.
H.
Tasaki
, “
Topological indices, symmetry protected topological phases, gapless edge excitations, spin pumping, and homotopy in quantum spin chains
” (unpublished).
62.

To be rigorous, a state is a linear map from the C*-algebra A=Aloc̄, the norm completion of Aloc, to C.

63.

We expect that a pure fixed-charge ground state ω of Ĥ is a ground state of Ĥ(μ) with suitable μ, except at phase transition points.

64.

This terminology was introduced recently in Ref. 53, but the notion itself was known before. See, e.g., Ref. 54.

65.

The converse is much more delicate in this case since a locally unique gapped ground state should have a gap for all possible excitations, while a locally unique gapped fixed-charge ground state is only required to have a gap for particle number preserving excitations.

66.

This is a formal result that follows from an abstract theorem (the Banach–Alaoglu theorem) in functional analysis. See, e.g., Theorem A. 24 (p. 488) of Ref. 52 for more details.

67.

There are two different definitions of class D for interacting fermions. See, e.g., Ref. 16. Mathematically rigorous Z2 index theories in Refs. 27 and 28 apply to class D according to the other definition. It is interesting that our index theory has some similarities with those in Refs. 27 and 28.

68.

Note that a locally unique gapped (fixed-charge) ground state of a Γphg-invariant Hamiltonian is not necessarily Γphg-invariant.

69.

To be consistent in notation, Ĥ should better be Ĥ(0), i.e., (2.9) with μ = 0.

70.

Note that this is true only for the infinite chain. In this sense, our index theory relies essentially on the fact that the chain is infinite.

71.

If we use the duality stated in Theorem 3.4, then Ind0 = 1 implies Ind1 = −1. In this sense, the above (slightly complicated) evaluation of ω1SSH(Ûθ) is not necessary.

72.

In Sec. V, we use Ûθ defined by (5.15) and (5.16). In these cases, we set θj=θ(j+12) and θj = θ (j), respectively.

73.

The spin operators are defined in terms of the fermion operators as Ŝjz=(n̂j,n̂j,)/2, Ŝj+=Ŝjx+iŜjy=ĉj,ĉj,, and Ŝj=ŜjxiŜjy=ĉj,ĉj,.

74.

To characterize fixed-charge ground states, we use perturbations V̂Aloc such that [V̂,N̂]=[V̂,N̂]=0. Note that we are making a slight abuse of notation here since not only the total charge but also the total Ŝz is conserved.

You do not currently have access to this content.