The moduli space of gapped Hamiltonians that are in the same topological phase is an intrinsic object that is associated with the topological order. The topology of these moduli spaces has been used recently in the construction of Floquet codes. We propose a systematical program to study the topology of these moduli spaces. In particular, we use effective field theory to study the cohomology classes of these spaces, which includes and generalizes the Berry phase. We discuss several applications for studying phase transitions. We show that a nontrivial family of gapped systems with the same topological order can protect isolated phase transitions in the phase diagram, and we argue that the phase transitions are characterized by screening of topological defects. We argue that the family of gapped systems obeys bulk-boundary correspondence. We show that a family of gapped systems in the bulk with the same topological order can rule out a family of gapped systems on the boundary with the topological order given by the topological boundary condition, constraining phase transitions on the boundary.

1.
A. Y.
Kitaev
, “
Fault tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
); arXiv:quant-ph/9707021.
2.
M. H.
Freedman
, “
P/NP, and the quantum field computer
,”
Proc. Natl. Acad. Sci. U. S. A.
95
(
1
),
98
101
(
1998
).
3.
M. H.
Freedman
,
A.
Kitaev
,
M. J.
Larsen
, and
Z.
Wang
, “
Topological quantum computation
,” arXiv:quant-ph/0101025 (
2001
).
4.
E.
Dennis
,
A.
Kitaev
,
A.
Landahl
, and
J.
Preskill
, “
Topological quantum memory
,”
J. Math. Phys.
43
,
4452
4505
(
2002
); arXiv:quant-ph/0110143.
5.
S.
Bravyi
and
A.
Kitaev
, “
Universal quantum computation with ideal Clifford gates and noisy ancillas
,”
Phys. Rev. A
71
,
022316
(
2005
).
6.
C.
Nayak
,
S. H.
Simon
,
A.
Stern
,
M.
Freedman
, and
S.
Das Sarma
, “
Non-Abelian anyons and topological quantum computation
,”
Rev. Mod. Phys.
80
,
1083
1159
(
2008
).
7.
P.
Bonderson
,
M.
Freedman
, and
C.
Nayak
, “
Measurement-only topological quantum computation
,”
Phys. Rev. Lett.
101
,
010501
(
2008
).
8.
J.
Alicea
,
Y.
Oreg
,
G.
Refael
,
F.
von Oppen
, and
M. P. A.
Fisher
, “
Non-Abelian statistics and topological quantum information processing in 1D wire networks
,”
Nat. Phys.
7
(
5
),
412
417
(
2011
).
9.
R. S. K.
Mong
,
D. J.
Clarke
,
J.
Alicea
,
N. H.
Lindner
,
P.
Fendley
,
C.
Nayak
,
Y.
Oreg
,
A.
Stern
,
E.
Berg
,
K.
Shtengel
, and
M. P. A.
Fisher
, “
Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure
,”
Phys. Rev. X
4
,
011036
(
2014
).
10.
Y.
Qiu
and
Z.
Wang
, “
Ground subspaces of topological phases of matter as error correcting codes
,”
Ann. Phys.
422
,
168318
(
2020
).
11.
Z.
Komargodski
,
K.
Ohmori
,
K.
Roumpedakis
, and
S.
Seifnashri
, “
Symmetries and strings of adjoint QCD2
,”
J. High Energy Phys.
2021
(
03
),
103
, arXiv:2008.07567 [hep-th].
12.
Y.
Choi
,
C.
Córdova
,
P.-S.
Hsin
,
H. T.
Lam
, and
S.-H.
Shao
, “
Noninvertible duality defects in 3+1 dimensions
,”
Phys. Rev. D
105
(
12
),
125016
(
2022
); arXiv:2111.01139 [hep-th].
13.
Y.
Choi
,
C.
Cordova
,
P.-S.
Hsin
,
H. T.
Lam
, and
S.-H.
Shao
, “
Non-invertible condensation, duality, and triality defects in 3+1 dimensions
,” arXiv:2204.09025 [hep-th].
14.
D.
Aasen
,
Z.
Wang
, and
M. B.
Hastings
, “
Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes
,”
Phys. Rev. B
106
(
8
),
085122
(
2022
); arXiv:2203.11137 [quant-ph].
15.
A.
Kapustin
and
L.
Spodyneiko
, “
Higher-dimensional generalizations of Berry curvature
,”
Phys. Rev. B
101
(
23
),
235130
(
2020
); arXiv:2001.03454 [cond-mat.str-el].
16.
A.
Kapustin
and
L.
Spodyneiko
, “
Higher-dimensional generalizations of the Thouless charge pump
,” arXiv:2003.09519 [cond-mat.str-el].
17.
P.-S.
Hsin
,
A.
Kapustin
, and
R.
Thorngren
, “
Berry phase in quantum field theory: Diabolical points and boundary phenomena
,”
Phys. Rev. B
102
,
245113
(
2020
); arXiv:2004.10758 [cond-mat.str-el].
18.
V. G.
Turaev
,
Quantum Invariants of Knots and 3-Manifolds
(
de Gruyter
,
2016
).
19.
M. B.
Hastings
and
J.
Haah
, “
Dynamically generated logical qubits
,”
Quantum
5
,
564
(
2021
); arXiv:2107.02194 [quant-ph].
20.
C.-M.
Chang
,
Y.-H.
Lin
,
S.-H.
Shao
,
Y.
Wang
, and
X.
Yin
, “
Topological defect lines and renormalization group flows in two dimensions
,”
J. High Energy Phys.
2019
(
01
),
026
, arXiv:1802.04445 [hep-th].
21.
C.
Córdova
,
D. S.
Freed
,
H. T.
Lam
, and
N.
Seiberg
, “
Anomalies in the space of coupling constants and their dynamical applications I
,”
SciPost Phys.
8
(
1
),
001
(
2020
); arXiv:1905.09315 [hep-th].
22.
C.
Córdova
,
D. S.
Freed
,
H. T.
Lam
, and
N.
Seiberg
, “
Anomalies in the space of coupling constants and their dynamical applications II
,”
SciPost Phys.
8
(
1
),
002
(
2020
), arXiv:1905.13361 [hep-th].
23.
S.
Bravyi
,
M. B.
Hastings
, and
S.
Michalakis
, “
Topological quantum order: Stability under local perturbations
,”
J. Math. Phys.
51
(
9
),
093512
(
2010
).
24.
K.
Walker
and
Z.
Wang
, “
(3+1)-TQFTs and topological insulators
,” arXiv:1104.2632 (
2011
).
25.
A.
Kitaev
,
Toward A Topological Classification of Many-Body Quantum States with Short-Range Entanglement
(
Simons Center for Geometry and Physics
,
2011
).
26.
P.
Etingof
,
D.
Nikshych
,
V.
Ostrik
, and
E.
Meir
, “
Fusion categories and homotopy theory
,”
Quantum Topol.
1
,
209
273
(
2010
); arXiv:0909.3140 [math.QA].
27.
J. D.
Stasheff
, “
Continuous cohomology of groups and classifying spaces
,”
Bull. Am. Math. Soc.
84
(
4
),
513
530
(
1978
).
28.
M.
Barkeshli
,
P.
Bonderson
,
M.
Cheng
, and
Z.
Wang
, “
Symmetry fractionalization, defects, and gauging of topological phases
,”
Phys. Rev. B
100
(
11
),
115147
(
2019
).
29.
F.
Benini
,
C.
Córdova
, and
P.-S.
Hsin
, “
On 2-group global symmetries and their anomalies
,”
J. High Energy Phys.
2019
(
03
),
118
; arXiv:1803.09336 [hep-th].
30.
G.
Moore
and
P.
Nelson
, “
The etiology of σ model anomalies
,”
Commun. Math. Phys.
100
,
83
(
1985
).
31.
M.
Levin
and
Z.-C.
Gu
, “
Braiding statistics approach to symmetry-protected topological phases
,”
Phys. Rev. B
86
,
115109
(
2012
).
32.
L.
Bhardwaj
,
D.
Gaiotto
, and
A.
Kapustin
, “
State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter
,”
J. High Energy Phys.
2017
(
04
),
096
, arXiv:1605.01640 [cond-mat.str-el].
33.
W.
Shirley
,
K.
Slagle
, and
X.
Chen
, “
Foliated fracton order from gauging subsystem symmetries
,”
SciPost Phys.
6
(
4
),
041
(
2019
); arXiv:1806.08679 [cond-mat.str-el].
34.
L.
Tsui
and
X.-G.
Wen
, “
Lattice models that realize Zn-1 symmetry-protected topological states for even n
,”
Phys. Rev. B
101
(
3
),
035101
(
2020
); arXiv:1908.02613 [cond-mat.str-el].
35.
Y.
Hu
,
Y.
Wan
, and
Y.-S.
Wu
, “
Twisted quantum double model of topological phases in two dimensions
,”
Phys. Rev. B
87
,
125114
(
2013
).
36.
D.
Delmastro
,
J.
Gomis
,
P.-S.
Hsin
, and
Z.
Komargodski
, “
Anomalies and symmetry fractionalization
,” arXiv:2206.15118 [hep-th].
37.
C.
Wang
and
T.
Senthil
, “
Time-reversal symmetric u(1) quantum spin liquids
,”
Phys. Rev. X
6
,
011034
(
2016
).
38.
P.-S.
Hsin
and
A.
Turzillo
, “
Symmetry-enriched quantum spin liquids in (3+1)d
,”
J. High Energy Phys.
2020
(
09
),
022
; arXiv:1904.11550 [cond-mat.str-el].
39.
A.
Kitaev
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
(
1
),
2
111
(
2006
); arXiv:cond-mat/0506438.
40.
M.
Barkeshli
,
Y.-A.
Chen
,
P.-S.
Hsin
, and
N.
Manjunath
, “
Classification of (2+1)D invertible fermionic topological phases with symmetry
,”
Phys. Rev. B
105
,
235143
(
2022
).
41.
Z.-C.
Gu
and
X.-G.
Wen
, “
Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory
,”
Phys. Rev. B
90
,
115141
(
2014
).
42.
P.-S.
Hsin
and
H. T.
Lam
, “
Discrete theta angles, symmetries and anomalies
,”
SciPost Phys.
10
,
032
(
2021
), arXiv:2007.05915 [hep-th].
43.
C.
Bonati
,
A.
Pelissetto
, and
E.
Vicari
, “
Lattice Abelian-Higgs model with noncompact gauge fields
,”
Phys. Rev. B
103
(
8
),
085104
(
2021
); arXiv:2010.06311 [cond-mat.stat-mech].
44.
C.
Cordova
,
P.-S.
Hsin
, and
N.
Seiberg
, “
Global symmetries, counterterms, and duality in Chern-Simons matter theories with orthogonal gauge groups
,”
SciPost Phys.
4
(
4
),
021
(
2018
); arXiv:1711.10008 [hep-th].
45.
G.
Moore
and
N.
Seiberg
, “
Taming the conformal zoo
,”
Phys. Lett. B
220
,
422
430
(
1989
).
46.
F. J.
Burnell
, “
Anyon condensation and its applications
,”
Annu. Rev. Condens. Matter Phys.
9
,
307
327
(
2018
); arXiv:1706.04940 [cond-mat.str-el].
47.
P.-S.
Hsin
,
H. T.
Lam
, and
N.
Seiberg
, “
Comments on one-form global symmetries and their gauging in 3d and 4d
,”
SciPost Phys.
6
(
3
),
039
(
2019
); arXiv:1812.04716 [hep-th].
48.
J.
Maldacena
,
N.
Seiberg
, and
G.
Moore
, “
D-brane charges in five-brane backgrounds
,”
J. High Energy Phys.
2001
(
10
),
005
; arXiv:hep-th/0108152.
49.
T.
Banks
and
N.
Seiberg
, “
Symmetries and strings in field theory and gravity
,”
Phys. Rev. D
83
,
084019
(
2011
); arXiv:1011.5120 [hep-th].
50.
A.
Kapustin
and
N.
Seiberg
, “
Coupling a QFT to a TQFT and duality
,”
J. High Energy Phys.
2014
(
04
),
001
; arXiv:1401.0740 [hep-th].
51.
T. D.
Ellison
,
Y.-A.
Chen
,
A.
Dua
,
W.
Shirley
,
N.
Tantivasadakarn
, and
D. J.
Williamson
, “
Pauli topological subsystem codes from Abelian anyon theories
,” arXiv:2211.03798 [quant-ph].
52.
X.-L.
Qi
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Topological field theory of time-reversal invariant insulators
,”
Phys. Rev. B
78
,
195424
(
2008
).
53.
A. G.
Abanov
and
P. B.
Wiegmann
, “
Theta terms in nonlinear sigma models
,”
Nucl. Phys. B
570
,
685
698
(
2000
); arXiv:hep-th/9911025.
54.
M.
Kamfor
,
S.
Dusuel
,
J.
Vidal
, and
K. P.
Schmidt
, “
Kitaev model and dimer coverings on the honeycomb lattice
,”
J. Stat. Mech.
2010
(
1008
),
P08010
; arXiv:1005.5103 [cond-mat.other].
55.
E.
Quinn
,
S.
Bhattacharjee
, and
R.
Moessner
, “
Phases and phase transitions of a perturbed Kekulé-Kitaev model
,”
Phys. Rev. B
91
,
134419
(
2015
).
56.
D. S.
Freed
and
C.
Teleman
, “
Relative quantum field theory
,”
Commun. Math. Phys.
326
,
459
476
(
2014
); arXiv:1212.1692 [hep-th].
57.
S.
Gukov
,
P.-S.
Hsin
, and
D.
Pei
, “
Generalized global symmetries of T[M] theories. Part I
,”
J. High Energy Phys.
2021
(
04
),
232
; arXiv:2010.15890 [hep-th].
58.
D.
Gaiotto
,
A.
Kapustin
,
N.
Seiberg
, and
B.
Willett
, “
Generalized global symmetries
,”
J. High Energy Phys.
2015
(
02
),
172
; arXiv:1412.5148 [hep-th].
59.
X.
Chen
,
A.
Dua
,
P.-S.
Hsin
,
C.-M.
Jian
,
W.
Shirley
, and
C.
Xu
, “
Loops in 4+1d topological phases
,” arXiv:2112.02137 [cond-mat.str-el].
60.
D.
Gaiotto
,
A.
Kapustin
,
Z.
Komargodski
, and
N.
Seiberg
, “
Theta, time reversal, and temperature
,”
J. High Energy Phys.
2017
(
05
),
091
; arXiv:1703.00501 [hep-th].
61.
D.
Tong
, “
Line operators in the standard model
,”
J. High Energy Phys.
2017
(
07
),
104
; arXiv:1705.01853 [hep-th].
62.
J.
Kaidi
,
K.
Ohmori
, and
Y.
Zheng
, “
Kramers-Wannier-like duality defects in (3+1)D gauge theories
,”
Phys. Rev. Lett.
128
(
11
),
111601
(
2022
); arXiv:2111.01141 [hep-th].
63.
M.
Barkeshli
,
Y.-A.
Chen
,
P.-S.
Hsin
, and
R.
Kobayashi
, “
Higher-group symmetry in finite gauge theory and stabilizer codes
,” arXiv:2211.11764 [cond-mat.str-el].
64.
R. D.
Peccei
and
H. R.
Quinn
, “
CP conservation in the presence of pseudoparticles
,”
Phys. Rev. Lett.
38
,
1440
1443
(
1977
).
65.
N.
Blinov
,
N.
Craig
,
M. J.
Dolan
,
J.
de Vries
,
P.
Draper
,
I. G.
Garcia
,
B.
Lillard
, and
J.
Shelton
, “
Snowmass white paper: Strong CP beyond axion direct detection
,” in
2022 Snowmass Summer Study
(
APS
,
2022
), p.
3
; arXiv:2203.07218 [hep-ph].
66.
O.
Aharony
,
N.
Seiberg
, and
Y.
Tachikawa
, “
Reading between the lines of four-dimensional gauge theories
,”
J. High Energy Phys.
2013
(
08
),
115
arXiv:1305.0318 [hep-th].
67.
C.
Cordova
and
K.
Ohmori
, “
Non-invertible chiral symmetry and exponential hierarchies
,” arXiv:2205.06243 [hep-th].
68.
T. D.
Brennan
and
C.
Córdova
, “
Axions, higher-groups, and emergent symmetry
,”
J. High Energy Phys.
2022
(
02
),
145
; arXiv:2011.09600 [hep-th].
69.

A genus is a pair of an anyon model B with a non-negative rational number c such that iθidi2D=e2πic/8. The word genus comes from the case of abelian anyon models and lattice conformal field theories. In this case, c is the chiral central charge of the lattice CFT, and the abelian anyon model of the lattice CFT is given by the genus of the lattice.

70.

More generally, one can vary the parameter over an auxiliary bulk such that there is no bulk dependence; this produces the integer class Berry phase,15,17 which is the analog of the Wess–Zumino term in the nonlinear sigma model.

71.

By Hamiltonian schema, we mean a well-defined procedure to write down Hamiltonians from some celluations of a space manifold, potentially with some extra background information such as orientation, branching, and framing.

72.

The equalities hold under suitable choices of topology, using BU(1)=CP=K(Z,2) and BG = K(G, 1) for G = U(1) with the discrete topology.

73.

More generally, we can couple the system to particles in ZN gauge theory that can have non-trivial statistics.

74.

For given n1, ω2 there can be no solution for n2. For instance, if we take M = S1 × S2, and n1 is the integral volume form on S1 modulo 2, and ω2 is the integral volume form on S2 modulo 2, then n1ω2 + cω21ω2 is the integral volume form on S1 × S2 modulo 2, which is closed but not exact in the cohomology with the Z2 coefficient, and thus the solution for n2 does not exist.

75.

Here it is an untwisted ZN quantum double, corresponding to “minimally” gauging the ZN symmetry without stacking extra symmetry protected topological phases.

76.

One can also compute the higher Berry curvature from the formula in Ref. 15, which we will leave for future work.

77.

It would also be interesting if the bulk-boundary correspondence could rule out isolated gapless theories without relevant deformations.

78.

For N = 0 mod 4, the center of Spin(N) has three Z2 subgroups, and the three quotients Spin(N)/Z2 for these three Z2 subgroups give SO(N), Sc(N) and Ss(N).

You do not currently have access to this content.