The present work studies deeply quadratic symplectic Lie superalgebras, obtaining, in particular, that they are all nilpotent. Consequently, we provide classifications in low dimensions and identify the double extensions that maintain symplectic structures. By means of both elementary odd double extensions and generalized double extensions of quadratic symplectic Lie superalgebras, we obtain an inductive description of quadratic symplectic Lie superalgebras of filiform type.

1.
Albuquerque
,
H.
,
Barreiro
,
E.
, and
Benayadi
,
S.
, “
Quadratic Lie superalgebras with a reductive even part
,”
J. Pure Appl. Algebra
213
,
724
731
(
2009
).
2.
Backhouse
,
N.
, “
A classification of four-dimensional Lie superalgebras
,”
J. Math. Phys.
19
,
2400
2402
(
1978
).
3.
Bajo
,
I.
,
Benayadi
,
S.
, and
Bordemann
,
M.
, “
Generalized double extension and descriptions of quadratic Lie superalgebras
,” arXiv:math-ph/0712.0228 (
2007
).
4.
Bajo
,
I.
,
Benayadi
,
S.
, and
Medina
,
A.
, “
Symplectic structures on quadratic Lie algebras
,”
J. Algebra
316
,
174
188
(
2007
).
5.
Barreiro
,
E.
and
Benayadi
,
S.
, “
Quadratic symplectic Lie superalgebras and Lie bi-superalgebras
,”
J. Algebra
321
,
582
608
(
2009
).
6.
Barreiro
,
E.
,
Benayadi
,
S.
,
Navarro
,
R. M.
, and
Sánchez
,
J. M.
, “
On Lie superalgebras with a filiform module as an odd part
,”
J. Lie Theory
32
(
4
),
917
936
(
2022
).
7.
Benamor
,
H.
and
Benayadi
,
S.
, “
Double extension of quadratic Lie superalgebras
,”
Commun. Algebra
27
(
1
),
67
88
(
1999
).
8.
Benayadi
,
S.
, “
Structures de certaines algèbres de Lie quadratiques
,”
Commun. Algebra
23
,
3867
3887
(
1995
).
9.
Benayadi
,
S.
, “
Quadratic Lie superalgebras with the completely reducible action of the even part on the odd part
,”
J. Algebra
223
,
344
366
(
2000
).
10.
Benayadi
,
S.
and
Bouarroudj
,
S.
, “
Manin triples and non-degenerate anti-symmetric bilinear forms on Lie superalgebras in characteristic 2
,”
J. Algebra
614
,
199
250
(
2023
).
11.
Bordemann
,
M.
, “
Nondegenerate invariant bilinear forms on nonassociative algebras
,”
Acta Math. Univ. Comenianae
66
,
151
201
(
1997
).
12.
Bouarroudj
,
S.
,
Krutov
,
A.
,
Leites
,
D.
, and
Shchepochkina
,
I.
, “
Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras
,”
Algebras Representation Theory
21
(
5
),
897
941
(
2018
).
13.
Bouarroudj
,
S.
and
Maeda
,
Y.
, “
Double and Lagrangian extensions for quasi-Frobenius Lie superalgebras
,”
J. Algebra its Appl. (to be published)
.
14.
Duong
,
M. T.
, “
A classification of solvable quadratic and odd quadratic Lie superalgebras in low dimensions
,”
Rev. Union Mat. Argent.
55
(
1
),
119
138
(
2014
).
15.
Duong
,
M. T.
and
Ushirobira
,
R.
, “
Singular quadratic Lie superalgebras
,”
J. Algebra
407
,
372
412
(
2014
).
16.
Elashvili
,
A. G.
, “
Frobenius Lie algebras
,”
Funct. Anal. Appl.
16
(
4
),
326
328
(
1982
).
17.
Elduque
,
A.
, “
Lie superalgebras with semisimple even part
,”
J. Algebra
183
,
649
663
(
1996
).
18.
Favre
,
G.
and
Santharoubane
,
L. J.
, “
Symmetric, invariant, non-degenerate bilinear form on Lie algebra
,”
J. Algebra
105
,
451
464
(
1987
).
19.
Figueroa-O’Farril
,
J. M.
and
Stanciu
,
S.
, “
On the structure of symmetric self-dual Lie algebras
,”
J. Math. Phys.
37
,
4121
4134
(
1996
).
20.
Gómez
,
J. R.
,
Khakimdjanov
,
Y.
, and
Navarro
,
R. M.
, “
Some problems concerning to nilpotent Lie superalgebras
,”
J. Geom. Phys.
51
,
472
485
(
2004
).
21.
Hofmann
,
K. H.
and
Keith
,
V. S.
, “
Invariant quadratic forms on finite dimensional Lie algebras
,”
Bull. Aust. Math. Soc.
33
,
21
36
(
1986
).
22.
Jacobson
,
N.
, “
A note on automorphisms and derivations of Lie algebras
,”
Proc. Am. Math. Soc.
6
,
281
283
(
1955
).
23.
Kath
,
I.
and
Olbrich
,
M.
, “
Metric Lie algebras and quadratic extensions
,”
Transform. Groups
11
(
1
),
87
131
(
2006
).
24.
Medina
,
A.
and
Revoy
,
P.
, “
Algèbres de Lie et produit scalaire invariant
,”
Ann. Sci. Èc. Norm. Super.
18
(
3
),
553
561
(
1985
).
25.
Ooms
,
A. I.
, “
On Frobenius Lie algebras
,”
Commun. Algebra
8
(
1
),
13
52
(
1980
).
26.
Rodríguez-Vallarte
,
M. C.
,
Salgado
,
G.
, and
Sánchez-Valenzuela
,
O. A.
, “
On indecomposable solvable Lie superalgebras having a Heisenberg nilradical
,”
J. Algebra Appl.
15
(
10
),
1650190
(
2016
).
27.
Scheunert
,
M.
,
The Theory of Lie Superalgebras
, Lectures Notes in Mathematics Vol. 716 (
Springer-Verlag
,
Berlin, Heidelberg
,
1979
).
You do not currently have access to this content.