We derive an explicit formula for connected (n, m)-point functions associated with an arbitrary diagonal tau-function of the 2-BKP hierarchy using the computation of neutral fermions and boson–fermion correspondence of type B and then apply this formula to the computation of connected spin double Hurwitz numbers. This is the type B analog of Wang and Yang [arXiv:2210.08712 (2022)].

1.
Alexandrov
,
A.
and
Shadrin
,
S.
, “
Elements of spin Hurwitz theory: Closed algebraic formulas, blobbed topological recursion, and a proof of the Giacchetto-Kramer-Lewanski conjecture
,”
Sel. Math.
29
,
26
(
2023
).
2.
Balogh
,
F.
and
Yang
,
D.
, “
Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function
,”
Lett. Math. Phys.
107
(
10
),
1837
1857
(
2017
).
3.
Date
,
E.
,
Jimbo
,
M.
,
Kashiwara
,
M.
, and
Miwa
,
T.
, “
Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP-type
,”
Physica D
4
(
3
),
343
365
(
1982
).
4.
Date
,
E.
,
Jimbo
,
M.
, and
Miwa
,
T.
,
Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras
(
Cambridge University Press
,
2000
).
5.
Dijkgraaf
,
R.
, “
Mirror symmetry and elliptic curves
,” in
The Moduli Space of Curves
(
Birkhauser
,
1995
), Vol. 129, pp.
149
164
.
6.
Ekedahl
,
T.
,
Lando
,
S.
,
Shapiro
,
M.
, and
Vainshtein
,
A.
, “
On Hurwitz numbers and Hodge integrals
,”
C. R. Acad. Sci., Ser. I
328
(
12
),
1175
1180
(
1999
).
7.
Ekedahl
,
T.
,
Lando
,
S.
,
Shapiro
,
M.
, and
Vainshtein
,
A.
, “
Hurwitz numbers and intersections on moduli spaces of curves
,”
Invent. Math.
146
(
2
),
297
327
(
2001
).
8.
Eskin
,
A.
,
Okounkov
,
A.
, and
Pandharipande
,
R.
, “
The theta characteristic of a branched covering
,”
Adv. Math.
217
,
873
888
(
2008
).
9.
Giacchetto
,
A.
,
Kramer
,
R.
, and
Lewański
,
D.
, “
A new spin on Hurwitz theory and ELSV via theta characteristics
,” arXiv:2104.05697 (
2021
).
10.
Giacchetto
,
A.
,
Kramer
,
R.
,
Lewański
,
D.
, and
Sauvaget
,
A.
, “
The spin Gromov-Witten/Hurwitz correspondence for P1
,” arXiv:2208.03259 (
2022
).
11.
Goulden
,
I. P.
,
Jackson
,
D. M.
, and
Vakil
,
R.
, “
Towards the geometry of double Hurwitz numbers
,”
Adv. Math.
198
(
1
),
43
92
(
2005
).
12.
Graber
,
T.
and
Vakil
,
R.
, “
Hodge integrals and Hurwitz numbers via virtual localization
,”
Compos. Math.
135
(
1
),
25
36
(
2003
).
13.
Gunningham
,
S.
, “
Spin Hurwitz numbers and topological quantum field theory
,”
Geom. Topol.
20
,
1859
1907
(
2016
).
14.
Harnad
,
J.
and
Balogh
,
F.
,
Tau Functions and Their Applications
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
2021
).
15.
Hurwitz
,
A.
, “
Über die anzahl der Riemann’schen flächen mit gegebenen verzweigungspunkten
,”
Math. Ann.
55
,
53
66
(
1902
).
16.
Jimbo
,
M.
and
Miwa
,
T.
, “
Solitons and infinite-dimensional Lie algebras
,”
Publ. Res. Inst. Math. Sci.
19
,
943
1001
(
1983
).
17.
Johnson
,
P.
, “
Double Hurwitz numbers via the infinite wedge
,”
Trans. Am. Math. Soc.
367
(
9
),
6415
6440
(
2015
).
18.
Lee
,
J.
, “
A note on Gunningham’s formula
,”
Bull. Aust. Math. Soc.
98
,
389
401
(
2018
).
19.
Lee
,
J.
, “
A square root of Hurwitz numbers
,”
Manuscripta Math.
162
(
1–2
),
99
113
(
2020
).
20.
Mironov
,
A.
,
Morozov
,
A.
, and
Natanzon
,
S.
, “
Cut-and-join structure and integrability for spin Hurwitz numbers
,”
Eur. Phys. J. C
80
(
2
),
97
(
2020
).
21.
Mironov
,
A. D.
,
Morozov
,
A.
,
Natanzon
,
S. M.
, and
Orlov
,
A. Y.
, “
Around spin Hurwitz numbers
,”
Lett. Math. Phys.
111
,
124
(
2021
).
22.
Okounkov
,
A.
, “
Toda equations for Hurwitz numbers
,”
Math. Res. Lett.
7
,
447
453
(
2000
).
23.
Okounkov
,
A.
and
Pandharipande
,
R.
, “
Gromov–Witten theory, Hurwitz theory, and completed cycles
,”
Ann. Math.
163
(
2
),
517
560
(
2006
).
24.
Okounkov
,
A.
and
Pandharipande
,
R.
, “
The equivariant Gromow–Witten theory of P1
,”
Ann. Math.
163
(
2
),
561
605
(
2006
).
25.
Orlov
,
A. Y.
,
Shiota
,
T.
, and
Takasaki
,
K.
, “
Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions
,” arXiv:1201.4518 (
2012
).
26.
Pandharipande
,
R.
, “
The Toda equations and the Gromov–Witten theory of the Riemann sphere
,”
Lett. Math. Phys.
53
(
1
),
59
74
(
2000
).
27.
Sato
,
M.
, “
Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold
,”
RIMS Kokyuroku
439
,
30
46
(
1981
).
28.
Segal
,
G.
and
Wilson
,
G.
, “
Loop groups and equations of KdV type
,”
Publ. Math. Inst. Hautes Etud. Sci.
61
(
1
),
5
65
(
1985
).
29.
Shadrin
,
S.
,
Spitz
,
L.
, and
Zvonkine
,
D.
, “
On double Hurwitz numbers with completed cycles
,”
J. London Math. Soc.
86
(
2
),
407
432
(
2012
).
30.
Takebe
,
T.
, “
Toda lattice hierarchy and conservation laws
,”
Commun. Math. Phys.
129
(
2
),
281
318
(
1990
).
31.
Tu
,
M.-H.
, “
On the BKP hierarchy: Additional symmetries, Fay identity and Adler–Shiota–van Moerbeke formula
,”
Lett. Math. Phys.
81
(
2
),
93
105
(
2007
).
32.
Ueno
,
K.
and
Takasaki
,
K.
, “
Toda lattice hierarchy
,”
Adv. Stud. Pure Math.
4
,
1
95
(
1984
).
33.
van de Leur
,
J.
, “
The Adler–Shiota–van Moerbeke formula for the BKP hierarchy
,”
J. Math. Phys.
36
,
4940
4951
(
1995
).
34.
Wang
,
Z.
and
Yang
,
C.
, “
BKP hierarchy, affine coordinates, and a formula for connected bosonic N-point functions
,”
Lett. Math. Phys.
112
,
62
(
2022
).
35.
Wang
,
Z.
and
Yang
,
C.
, “
Diagonal tau-functions of 2D Toda lattice hierarchy, connected (n, m)-point functions, and double Hurwitz numbers
,” arXiv:2210.08712 (
2022
).
36.
You
,
Y.
, “
Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups
,” in
Infinite-Dimensional Lie Algebras and Groups
, Advanced Series in Mathematical Physics Vol. 7 (
Luminy-Marseille
, 1988), pp.
449
464
.
37.
Zhou
,
J.
, “
Explicit formula for Witten-Kontsevich tau-function
,” arXiv:1306.5429 (
2013
).
38.
Zhou
,
J.
, “
Emergent geometry and mirror symmetry of a point
,” arXiv:1507.01679 (
2015
).
You do not currently have access to this content.