In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.

1.
AlHussein
,
H.
, “
Gröbner–Shirshov basis and Hochschild cohomology of the group Γ54
,”
Sib. Electron. Math. Rep.
19
(
1
),
211
236
(
2022
)
2.
Alhussein
,
H.
and
Kolesnikov
,
P. S.
, “
On the Hochschild cohomology of universal enveloping associative conformal algebras
,”
J. Math. Phys.
62
,
121701
(
2021
).
3.
Alhussein
,
H.
,
Kolesnikov
,
P. S.
, and
Lopatkin
,
V. A.
, “
Morse matching method for conformal cohomologies
,” arXiv:2204.10837.
4.
Anick
,
D. J.
, “
On the homology of associative algebras
,”
Trans. Am. Math. Soc.
296
(
2
),
641
659
(
1986
).
5.
Bakalov
,
B.
,
Kac
,
V.
, and
Voronov
,
A.
, “
Cohomology of conformal algebras
,”
Commun. Math. Phys.
200
,
561
589
(
1999
).
6.
Bakalov
,
B.
,
D’Andrea
,
A.
, and
Kac
,
V. G.
, “
Theory of finite pseudoalgebras
,”
Adv. Math.
162
,
1
140
(
2001
).
7.
Bokut
,
L. A.
, “
Imbeddings into simple associative algebras (Russian)
,”
Algebra Logika
15
,
117
142
(
1976
).
8.
Bokut
L. A.
and
Chen
Y.
, “
Gröbner-Shirshov bases and their calculation
,”
Bull. Math. Sci.
4
(
3
),
325
395
(
2014
).
9.
Bokut
,
L. A.
,
Fong
,
Y.
, and
Ke
,
W.-F.
, “
Composition-diamond lemma for associative conformal algebras
,”
J. Algebra
272
,
739
774
(
2004
).
10.
Borcherds
,
R. E.
, “
Vertex algebras, Kac-Moody algebras, and the Monster
,”
Proc. Natl. Acad. Sci. U. S. A.
83
,
3068
3071
(
1986
).
11.
Boyallian
,
C.
,
Kac
,
V. G.
, and
Liberati
,
J. I.
, “
On the classification of subalgebras of CendN and gcN
,”
J. Algebra
260
,
32
63
(
2003
).
12.
Cheng
,
S.-J.
and
Kac
,
V. G.
, “
Conformal modules
,”
Asian J. Math.
1
,
181
193
(
1997
).
13.
D’Andrea
,
A.
and
Kac
,
V. G.
, “
Structure theory of finite conformal algebras
,”
Sel. Math., New Ser.
4
,
377
418
(
1998
).
14.
Dolguntseva
,
I. A.
, “
The Hochschild cohomology for associative conformal algebras
,”
Algebra Logic
46
,
373
384
(
2007
).
15.
Dubrovin
,
B. A.
and
Novikov
,
S. P.
, “
Poisson brackets of hydrodynamic type
,”
Dokl. Akad. Nauk SSSR
279
(
2
),
294
297
(
1984
); available at https://mathscinet.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=770656.
16.
Fattori
,
D.
and
Kac
,
V. G.
, “
Classification of finite simple Lie conformal superalgebras
,”
J. Algebra
258
,
23
59
(
2002
).
17.
Forman
,
R.
, “
Morse-Theory for cell-c omplexes
,”
Adv. Math.
134
,
90
145
(
1998
).
18.
Forman
,
R.
, “
A user’s guide to discrete Morse theory
,”
Sem. Loth. de Comb.
48
,
6
35
(
2002
); available at https://mathscinet.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=1939695.
19.
Jöllenbeck
,
M.
and
Welker
,
V.
, “
Minimal resolutions via algebraic discrete Morse theory
,”
Mem. Am. Math. Soc.
197
,
923
(
2009
).
20.
Kac
,
V. G.
,
Vertex Algebras for Beginners
, University Lecture Series Vol. 10 (
American Mathematical Society
,
Providence, RI
,
1998
).
21.
Kac
V. G.
, “
Formal distribution algebras and conformal algebras
,” in
12th International Congress of Mathematical Physics (ICMP97)
, edited by
De Wit
,
D.
et al
(
International Press
,
Cambridge, MA
,
1999
), pp.
80
97
.
22.
Kolesnikov
,
P. S.
and
Kozlov
,
R. A.
, “
On the Hochschild cohomologies of associative conformal algebras with a finite faithful representation
,”
Commun. Math. Phys.
369
(
1
),
351
370
(
2019
).
23.
Kolesnikov
,
P. S.
, “
The Ado theorem for finite Lie conformal algebras with Levi decomposition
,”
J. Algebra Appl.
15
(
07
),
1650130
(
2016
).
24.
Kolesnikov
,
P. S.
, “
Gröbner–Shirshov bases for associative conformal algebras with arbitrary locality function
,” in
New Trends in Algebra and Combinatorics: Proceedings of the 3rd International Congress in Algebra and Combinatorics
, edited by
Shum
,
K. P.
et al
(
World Scientific
,
2020
), pp.
255
267
.
25.
Kolesnikov
,
P. S.
, “
Universal enveloping Poisson conformal algebras
,”
Int. J. Algebra Comput.
30
(
05
),
1015
1034
(
2020
).
26.
Kolesnikov
,
P. S.
and
Kozlov
,
R. A.
, “
Standard bases for the universal associative conformal envelopes of Kac–Moody conformal algebras
,”
Algebras Represent. Theor.
25
,
847
867
(
2022
).
27.
Kozlov
,
R. A.
, “
Hochshild cohomology of the associative conformal algebra Cend1,x
,”
Algebra Logic
58
,
36
47
(
2019
).
28.
Maclane
,
S.
,
Homology
(
Springer Verlag
,
Berlin; Göttingen; Heideiberg
,
1963
).
29.
Roitman
,
M.
, “
On free conformal and vertex algebras
,”
J. Algebra
217
,
496
527
(
1999
).
30.
Roitman
,
M.
, “
Universal enveloping conformal algebras
,”
Sel. Math. New Ser.
6
,
319
345
(
2000
).
31.
Sköldberg
,
E.
, “
Morse theory from an algebraic viewpoint
,”
Trans. Am. Math. Soc.
358
(
1
),
115
129
(
2006
); available at https://www.ams.org/journals/tran/2006-358-01/S0002-9947-05-04079-1/.
32.
Su
,
Y.
, “
Low dimensional cohomology of general conformal algebras gcN
,”
J. Math. Phys.
45
(
1
),
509
524
(
2004
).
33.
Xu
,
X.
, “
Quadratic conformal superalgebras
,”
J. Algebra
231
,
1
38
(
2000
).
You do not currently have access to this content.