This paper is devoted to investigating the heat trace asymptotic expansion associated with the magnetic Steklov problem on a smooth compact Riemannian manifold (Ω, g) with smooth boundary ∂Ω. By computing the full symbol of the magnetic Dirichlet-to-Neumann map M, we establish an effective procedure, by which we can calculate all the coefficients a0, a1, …, an−1 of the asymptotic expansion. In particular, we explicitly give the first four coefficients a0, a1, a2, and a3. They are spectral invariants, which provide precise information concerning the volume and curvatures of the boundary ∂Ω and some physical quantities.

1.
J.
Avron
,
I.
Herbst
, and
B.
Simon
, “
Schrödinger operators with magnetic fields. I. General interactions
,”
Duke Math. J.
45
(
4
),
847
883
(
1978
).
2.
B.
Simon
, “
Schrödinger operators in the twentieth century
,”
J. Math. Phys.
41
,
3523
3555
(
2000
).
3.
L.
Erdös
, “
Recent developments in quantum mechanics with magnetic fields
,”
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday
, Proceedings of Symposia in Pure Mathematics (
Amer. Math. Soc.
,
Providence, RI
,
2007
), Vol. 76, Part 1, pp.
401
428
.
4.
G. R.
Berdiyorov
,
X. H.
Chao
,
F. M.
Peeters
,
H. B.
Wang
,
V. V.
Moshchalkov
, and
B. Y.
Zhu
, “
Magnetoresistance oscillations in superconducting strips: A Ginzburg-Landau study
,”
Phys. Rev. B
86
(
22
),
233
243
(
2012
).
5.
A. K.
Elmurodov
,
F. M.
Peeters
,
D. Y.
Vodolazov
,
S.
Michotte
,
S.
Adam
,
F. d. M.
de Horne
,
L.
Piraux
,
D.
Lucot
, and
D.
Mailly
, “
Phase-slip phenomena in NbN superconducting nanowires with leads
,”
Phys. Rev. B
78
(
21
),
214519
(
2008
).
6.
S.
Fournais
and
B.
Helffer
,
Spectral Methods in Surface Superconductivity
(
Springer Science & Business Media
,
New York
,
2010
), Vol. 77.
7.
T.
Kapitula
and
P. G.
Kevrekidis
, “
Bose–Einstein condensates in the presence of a magnetic trap and optical lattice
,”
Chaos
15
(
3
),
037114
(
2005
).
8.
R. L.
Frank
, “
On the asymptotic number of edge states for magnetic Schrödinger operators
,”
Proc. London Math. Soc.
95
(
1
),
1
19
(
2007
).
9.
S.
Raghu
and
F.
Haldane
, “
Analogs of quantum-Hall-effect edge states in photonic crystals
,”
Phys. Rev. A
78
(
3
),
033834
(
2008
).
10.
T.
Ikebe
and
T.
Kato
, “
Uniqueness of the self-adjoint extension of singular elliptic differential operators
,”
Arch. Rational Mech. Anal.
9
,
77
92
(
1962
).
11.
T.
Kato
, “
Schrödinger operators with singular potentials
,”
Israel J. Math.
13
,
135
148
(
1972
).
12.
I.
Knowles
, “
On essential self-adjointness for singular elliptic differential operators
,”
Math. Ann.
227
,
155
172
(
1977
).
13.
M.
Schechter
, “
Essential self-adjointness of the Schrödinger operator with magnetic vector potential
,”
J. Funct. Anal.
20
(
2
),
93
104
(
1975
).
14.
B.
Simon
, “
Schrödinger operators with singular magnetic vector potentials
,”
Math. Z.
131
,
361
370
(
1973
).
15.
G.
Nakamura
,
Z.
Sun
, and
G.
Uhlmann
, “
Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field
,”
Math. Ann.
303
,
377
388
(
1995
).
16.
W.
Stekloff
, “
Sur les problèmes fondamentaux de la physique mathématique (suite et fin), (French)
,”
Ann. Sci. École Norm. Sup.
19
,
455
490
(
1902
).
17.
D. W.
Fox
and
J. R.
Kuttler
, “
Sloshing frequencies
,”
Z. Angew. Math. Phys.
34
,
668
696
(
1983
).
18.
N.
Kopachevsky
and
S.
Krein
, “
Operator approach to linear problems of hydrodynamics
,”
Operator Theory: Advances and Applications
(
Birkhäuser-Verlag
,
Basel
,
2001
), Vol. 1, p.
128
.
19.
P.
Kuchment
, “
The mathematics of photonic crystals
,”
Mathematical Modeling in Optical Science
, Frontiers in Applied Mathematics (
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
,
2001
), Vol. 22, pp.
207
272
.
20.
L.
Sandgren
, “
A Vibration Problem
,”
Meddelanden från Lunds Universitets Matematiska Seminarium
(
Förf.
,
1955
), Vol. 13, pp.
1
83
.
21.
G.
Liu
, “
The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds
,”
Adv. Math.
228
(
4
),
2162
2217
(
2011
).
22.
G.
Liu
, “
Asymptotic expansion of the trace of the heat kernel associated to the Dirichlet-to-Neumann operator
,”
J. Differ. Equ.
259
(
7
),
2499
2545
(
2015
).
23.
I.
Polterovich
and
D. A.
Sher
, “
Heat invariants of the Steklov problem
,”
J. Geom. Anal.
25
,
924
950
(
2015
).
24.
G.
Liu
, “
Spectral invariants of the perturbed polyharmonic Steklov problem
,”
Calc. Var. Partial Differ. Equ.
61
(
125
),
1
19
(
2022
).
25.
G.
Liu
, “
Determination of isometric real-analytic metric and spectral invariants for elastic Dirichlet-to-Neumann map on Riemannian manifolds
,” arXiv:1908.05096 (
2019
).
26.
G.
Liu
, “
The geometric invariants for the spectrum of the Stokes operator
,”
Math. Ann.
382
(
3-4
),
1985
2032
(
2022
).
27.
G.
Liu
, “
Geometric invariants of spectrum of the Navier–Lamé operator
,”
J. Geom. Anal.
31
,
10164
10193
(
2021
).
28.
W.
Wang
and
Z.
Wang
, “
On the relative heat invariants of the Dirichlet-to-Neumann operators associated with Schrödinger operators
,”
J. Pseudo-Differ. Oper. Appl.
10
,
805
836
(
2019
).
29.
G.
Liu
and
X.
Tan
, “
Asymptotic expansion of the heat trace of the thermoelastic Dirichlet-to-Neumann map
,” arXiv:2206.01374 (
2022
).
30.
G.
Liu
and
X.
Tan
, “
Asymptotic expansions of the traces of the thermoelastic operators
,” arXiv:2205.13238 (
2022
).
31.
T. P.
Branson
and
P. B.
Gilkey
, “
The asymptotics of the Laplacian on a manifold with boundary
,”
Commun. Partial Differ. Equa.
15
,
245
272
(
1990
).
32.
P.
Gilkey
,
Asymptotic Formulae in Spectral Geometry
(
CRC Press
,
Boca Raton
,
2004
).
33.
P.
Gilkey
,
Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem
,
2nd ed.
(
CRC Press
,
Boca Raton
,
1995
).
34.
P.
Gilkey
, “
The spectral geometry of a Riemannian manifold
,”
J. Differ. Geom.
10
,
601
618
(
1975
).
35.
P.
Gilkey
and
G.
Grubb
, “
Logarithmic terms in asymptotic expansions of heat operator traces
,”
Commun. Partial Differ. Equ.
23
(
5-6
),
777
792
(
1998
).
36.
A.
Calderón
, “
On an inverse boundary value problem
,”
Seminar in Numerical Analysis and its Applications to Continuum Physics
(
Soc. Brasileira de Matemática
,
RJ
,
1980
), pp.
65
73
.
37.
J.
Sylvester
and
G.
Uhlmann
, “
A global uniqueness theorem for an inverse boundary value problem
,”
Ann. Math.
125
(
1
),
153
169
(
1987
).
38.
G.
Uhlmann
, “
Inverse problems: Seeing the unseen
,”
Bull. Math. Sci.
4
(
2
),
209
279
(
2014
).
39.
M.
Bellassoued
and
M.
Choulli
, “
Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map
,”
J. Funct. Anal.
258
,
161
195
(
2010
).
40.
D.
Dos Santos Ferreira
,
C. E.
Kenig
,
M.
Salo
, and
G.
Uhlmann
, “
Limiting Carleman weights and anisotropic inverse problems
,”
Invent. Math.
178
,
119
171
(
2009
).
41.
D.
Dos Santos Ferreira
,
C. E.
Kenig
,
J.
Sjöstrand
, and
G.
Uhlmann
, “
Determining a magnetic Schrödinger operator from partial Cauchy data
,”
Commun. Math. Phys.
271
,
467
488
(
2007
).
42.
G.
Eskin
, “
Global uniqueness in the inverse scattering problem for the Schrödinger operator with external Yang–Mills potentials
,”
Commun. Math. Phys.
222
,
503
531
(
2001
).
43.
K.
Krupchyk
and
G.
Uhlmann
, “
Inverse problems for magnetic Schrödinger operators in transversally anisotropic Geometries
,”
Commun. Math. Phys.
361
,
525
582
(
2018
).
44.
K.
Krupchyk
and
G.
Uhlmann
, “
Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential
,”
Commun. Math. Phys.
327
,
993
1009
(
2014
).
45.
L.
Päivärinta
,
M.
Salo
, and
G.
Uhlmann
, “
Inverse scattering for the magnetic Schrödinger operator
,”
J. Funct. Anal.
259
(
7
),
1771
1798
(
2010
).
46.
Z. Q.
Sun
, “
An inverse boundary value problem for Schrödinger operators with vector potentials
,”
Trans. Am. Math. Soc.
338
(
2
),
953
969
(
1993
).
47.
M.
Kac
, “
Can one hear the shape of a drum?
,”
Am. Math. Mon.
73
(
4
),
1
23
(
1966
).
48.
G. G.
Lorenß
, “
Beweis des Gaußschen Integralsatzes
,”
Math. Z.
51
,
61
81
(
1947
).
49.
M. H.
Protter
, “
Can one hear the shape of a drum? Revisited
,”
SIAM Rev.
29
(
2
),
185
197
(
1987
).
50.
H.
Weyl
, “
Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung
,”
J. Reine Angew. Math.
1912
,
1
11
.
51.
J.
Edward
and
S.
Wu
, “
Determinant of the Neumann operator on smooth Jordan curves
,”
Proc. Am. Math. Soc.
111
(
2
),
357
363
(
1991
).
52.
W.
Arendt
,
R.
Nittka
,
W.
Peter
, and
F.
Steiner
, “
Weyl’s law: Spectral properties of the Laplacian in mathematics and physics
,”
Mathematical Analysis of Evolution, Information, and Complexity
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2009
), pp.
1
72
.
53.
Heat Kernel Techniques and Quantum Gravity
, Discourse, Mathematics and Mathematics Education, edited by
S.
Fulling
(
Texas A&M Univ.
,
College Station
,
1995
), Vol. 4.
54.
G.
Grubb
,
Functional Calculus of Pseudo-Differential Boundary Problems
(
Birkhäuser
,
Boston
,
1986
).
55.
Yu.
Safarov
and
D.
Vassiliev
,
The Asymptotic Distribution of Eigenvalues of Partial Differential Operators
(
American Mathematical Society
,
1997
).
56.
J.
Korevaa
,
Tauberian Theory: A Century of Developments
(
Springer-Verlag
,
Berlin, Heidelberg
,
2004
).
57.
M.
Taylor
,
Partial Differential Equations II
,
2nd ed.
(
Springer Science+Business Media
,
New York
,
2011
).
58.
G. L.
Pollack
and
D. R.
Stump
,
Electromagnetism
(
Pearson Education Inc.
,
2002
).
59.
M.
Cekić
, “
Calderón problem for Yang–Mills connections
,”
J. Spectr. Theory
10
(
2
),
463
513
(
2020
).
60.
R.
Gabdurakhmanov
, “
On the Dirichlet-to-Neumann operator for the connection Laplacian
,” arXiv:2112.13466 (
2021
).
61.
L.
Hörmander
,
The Analysis of Partial Differential Operators III
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1985
).
62.
M. S.
Agranovich
, “
Some asymptotic formulas for elliptic pseudodifferential operators
,”
Funk. Anal. Prilozh.
21
,
53
56
(
1987
).
63.
J. J.
Duistermaat
and
V. W.
Guillemin
, “
Spectrum of positive elliptic operators and periodic bicharacteristics
,”
Invent. Math.
29
(
1
),
39
79
(
1975
).
64.
G.
Grubb
and
R. T.
Seeley
, “
Weakly parametric pseudodifferential operators and Atiyah–Patodi–Singer boundary problems
,”
Invent. Math.
121
,
481
529
(
1995
).
65.
B.
Chow
,
P.
Lu
, and
L.
Ni
,
Hamilton’s Ricci Flow
(
Science Press/American Mathematical Society
,
Beijing/Providence, RI
,
2006
).
66.
J. M.
Lee
and
G.
Uhlmann
, “
Determining anisotropic real-analytic conductivities by boundary measurements
,”
Commun. Pure Appl. Math.
42
(
8
),
1097
1112
(
1989
).
67.
M.
Taylor
,
Pseudodifferential Operators
(
Princeton University Press
,
Princeton, NJ
,
1981
).
68.
M. A.
Shubin
,
Pseudodifferential Operators and Spectral Theory
,
2nd ed.
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
2001
).
69.
F.
Treves
,
Introduction to Pseudodifferential and Fourier Integral Operator
(
Plenum Press
,
New York
,
1980
).
70.
L.
Hörmander
,
Linear Partial Differential Operators
(
Springer
,
Berlin
,
1964
).
71.
R. T.
Seeley
, “
Complex powers of an elliptic operator
,”
Singular Integrals
, Proceedings of Symposia in Pure Mathematics (
American Mathematical Society
,
Province, RI
,
1967
), pp.
288
307
.
72.
R.
Seeley
, “
The resolvent of an elliptic boundary value problem
,”
Am. J. Math.
91
,
889
920
(
1969
).
73.
C. B.
Morrey, Jr.
,
Multiple Integrals in the Calculus of Variations
(
Springer-Verlag
,
New York
,
1966
).
74.
C. B.
Morrey, Jr.
, “
On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations
,”
Am. J. Math.
80
,
198
218
(
1958
).
75.
H. B.
Stewart
, “
Generation of analytic semigroups by strongly elliptic operators
,”
Trans. Am. Math. Soc.
199
,
141
161
(
1974
).
76.
A.
Friedman
,
Partial Differential Equations of Parabolic Type
(
Prentice Hall
,
Englewood Cliff
,
1964
).
77.
B.
Chow
and
D.
Knopf
,
The Ricci Flow: An Introduction
(
American Mathematical Society
,
2004
).
You do not currently have access to this content.