Random tilings of very large domains will typically lead to a solid, a liquid, and a gas phase. In the two-phase case, the solid–liquid boundary (arctic curve) is smooth, possibly with singularities. At the point of tangency of the arctic curve with the domain boundary, for large-sized domains, the tiles of a certain shape form a singly interlacing set, fluctuating according to the eigenvalues of the principal minors of a Gaussian unitary ensemble-matrix. Introducing non-convexities in large domains may lead to the appearance of several interacting liquid regions: They can merely touch, leading to either a split tacnode (hard tacnode), with two distinct adjacent frozen phases descending into the tacnode, or a soft tacnode. For appropriate scaling of the non-convex domains and probing about such split tacnodes, filaments, evolving in a bricklike sea of dimers of another type, will connect the liquid patches. Nearby, the tiling fluctuations are governed by a discrete tacnode kernel—i.e., a determinantal point process on a doubly interlacing set of dots belonging to a discrete array of parallel lines. This kernel enables us to compute the joint distribution of the dots along those lines. This kernel appears in two very different models: (i) domino tilings of skew-Aztec rectangles and (ii) lozenge tilings of hexagons with cuts along opposite edges. Soft tacnodes appear when two arctic curves gently touch each other amid a bricklike sea of dimers of one type, unlike the split tacnode. We hope that this largely expository paper will provide a view on the subject and be accessible to a wider audience.

1.
P. A.
MacMahon
, “
III. Memoir on the theory of the partition of numbers.—Part V. Partitions in two-dimensional space
,”
Philos. Trans. R. Soc. London, Ser. A
211
,
75
(
1911
).
2.
I.
Macdonald
,
Symmetric Functions and Hall Polynomials
, Oxford Mathematical Monographs (
Clarendon Press
,
1995
).
3.
M.
Ciucu
and
I.
Fischer
, “
Lozenge tilings of hexagons with arbitrary dents
,”
Adv. Appl. Math.
73
,
1
22
(
2016
).
4.
C.
Krattenthaler
, “
Descending plane partitions and rhombus tilings of a hexagon with a triangular hole
,”
Eur. J. Combinatorics
27
(
7
),
1138
1146
(
2006
).
5.
B.
Kaufman
and
L.
Onsager
, “
Crystal statistics. III. Short-range order in a binary Ising lattice
,”
Phys. Rev.
76
,
1244
1252
(
1949
).
6.
M.
Kac
and
J. C.
Ward
, “
A combinatorial solution of the two-dimensional Ising model
,”
Phys. Rev.
88
,
1332
1337
(
1952
).
7.
P. W.
Kasteleyn
, “
The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice
,”
Physica
27
,
1209
1225
(
1961
).
8.
P. W.
Kasteleyn
, “
Graph theory and crystal physics
,” in
Graph Theory and Theoretical Physics
(
Academic Press
,
London
,
1967
), pp.
43
110
.
9.
H. N. V.
Temperley
and
M. E.
Fisher
, “
The dimer problem in statistical mechanics—An exact result
,”
Philos. Mag.
6
,
1061
1063
(
1961
).
10.
R.
Kenyon
, “
Lectures on dimers
,” in
Statistical Mechanics
, IAS/Park City Mathematics Series Vol. 16 (
American Mathematical Society
,
Providence, RI
,
2009
), pp.
191
230
; arXiv:0910.3129.
11.
R.
Kenyon
and
A.
Okounkov
, “
Limit shapes and the complex Burgers equation
,”
Acta Math.
199
(
2
),
263
302
(
2007
).
12.
R.
Kenyon
,
A.
Okounkov
, and
S.
Sheffield
, “
Dimers and amoebae
,”
Ann. Math.
163
(
3
),
1019
1056
(
2006
).
13.
H.
Cohn
,
R.
Kenyon
, and
J.
Propp
, “
A variational principle for domino tilings
,”
J. Am. Math. Soc.
14
,
297
346
(
2001
).
14.
A.
Okounkov
and
N.
Reshetikhin
, “
Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram
,”
J. Am. Math. Soc.
16
,
581
603
(
2003
).
15.
K.
Johansson
, “
Edge fluctuations of limit shapes
,” in
Current Developments in Mathematics (Harvard Lectures, 2016)
(
International Press
,
Somerville, MA
,
2018
), pp.
47
110
.
16.
V. E.
Gorin
,
Lectures on Random Lozenge Tilings
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
2021
).
17.
D.
Romik
,
The Surprising Mathematics of Longest Increasing Subsequences
, Institute of Mathematical Statistics Textbooks Vol. 4 (
Cambridge University Press
,
New York
,
2015
),
xi+353
pp.
18.
K.
Astala
,
E.
Duse
,
I.
Prause
, and
X.
Zhong
, “
Dimer models and conformal structures
,” arXiv:2004.02599.
19.
H.
Cohn
,
M.
Larsen
, and
J.
Propp
, “
The shape of a typical boxed plane partition
,”
N. Y. J. Math.
4
,
137
165
(
1998
).
20.
N.
Elkies
,
G.
Kuperberg
,
M.
Larsen
, and
J.
Propp
, “
Alternating-sign matrices and domino tilings (Part I)
,”
J. Algebraic Combinatorics
1
(
2
),
111
132
(
1992
).
21.
K.
Johansson
, “
Discrete orthogonal polynomial ensembles and the Plancherel measure
,”
Ann. Math.
153
,
259
296
(
2001
).
22.
K.
Johansson
, “
Non-intersecting paths, random tilings and random matrices
,”
Probab. Theory Relat. Fields
123
,
225
280
(
2002
).
23.
K.
Johansson
, “
Discrete polynuclear growth and determinantal processes
,”
Commun. Math. Phys.
242
,
277
329
(
2003
).
24.
K.
Johansson
, “
Non-intersecting, simple, symmetric random walks and the extended Hahn kernel
,”
Ann. Inst. Fourier
55
,
2129
2145
(
2005
).
25.
V. E.
Gorin
, “
Nonintersecting paths and the Hahn orthogonal polynomial ensemble
,”
Funct. Anal. Appl.
42
,
180
197
(
2008
).
26.
K.
Johansson
, “
The arctic circle boundary and the Airy process
,”
Ann. Probab.
33
,
1
30
(
2005
).
27.
K.
Johansson
and
E.
Nordenstam
, “
Eigenvalues of GUE minors
,”
Electron. J. Probab.
11
,
1342
1371
(
2006
).
28.
N.
Berestycki
,
B.
Laslier
, and
G.
Ray
, “
Dimers and imaginary geometry
,”
Ann. Probab.
48
(
1
),
1
52
(
2020
); arXiv:1603.09740.
29.
A.
Borodin
and
P. L.
Ferrari
, “
Anisotropic growth of random surfaces in 2 + 1 dimensions
,”
Commun. Math. Phys.
325
,
603
684
(
2014
).
30.
A.
Bufetov
and
A.
Knizel
, “
Asymptotics of random domino tilings of rectangular Aztec diamonds
,”
Ann. Inst. Henri Poincare
54
(
3
),
1250
1290
(
2018
); arXiv:1604.01491v2.
31.
A.
Bufetov
and
V.
Gorin
, “
Fourier transform on high-dimensional unitary groups with applications to random tilings
,”
Duke Math. J.
168
,
2559
2649
(
2019
).
32.
M.
Duits
, “
The Gaussian free field in an interlacing particle system with two jump rates
,”
Commun. Pure Appl. Math.
66
(
4
),
600
643
(
2013
); arXiv:1105.4656.
33.
M.
Duits
, “
On global fluctuations for non-colliding processes
,”
Ann. Probab.
46
(
3
),
1279
1350
(
2018
); arXiv:1510.08248.
34.
J.
Huang
, “
Height fluctuations of random lozenge tilings through nonintersecting random walks
,” arXiv:2011.01751.
35.
B.
Laslier
, “
Central limit theorem for lozenge tilings with curved limit shape
,” arXiv:2102.05544.
36.
R.
Kenyon
, “
Height fluctuations in the honeycomb dimer model
,”
Commun. Math. Phys.
281
,
675
709
(
2008
).
37.
L.
Petrov
, “
Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field
,”
Ann. Probab.
43
,
1
43
(
2015
).
38.
E.
Duse
and
A.
Metcalfe
, “
Asymptotic geometry of discrete interlaced patterns: Part I
,”
Int. J. Math.
26
,
1550093
(
2015
).
39.
E.
Duse
and
A.
Metcalfe
, “
Asymptotic geometry of discrete interlaced patterns: Part II
,”
Ann. Inst. Fourier
70
(
1
),
375
436
(
2020
); arXiv:1507.00467.
40.
L.
Petrov
, “
Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes
,”
Probab. Theory Relat. Fields
160
,
429
487
(
2014
).
41.
M.
Prähofer
and
H.
Spohn
, “
Scale invariance of the PNG droplet and the Airy process
,”
J. Stat. Phys.
108
,
1071
1106
(
2002
).
42.
M.
Adler
,
M.
Cafasso
, and
P.
van Moerbeke
, “
From the Pearcey to the Airy process
,”
Electron. J. Probab.
16
(
36
),
1048
1064
(
2011
).
43.
A. Yu.
Okounkov
and
N. Yu.
Reshetikhin
, “
The birth of a random matrix
,”
Moscow Math. J.
6
,
553
566
, 588 (
2006
).
44.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
Double Aztec diamonds and the tacnode process
,”
Adv. Math.
252
,
518
571
(
2014
).
45.
M.
Adler
,
P.
Ferrari
, and
P.
van Moerbeke
, “
Nonintersecting random walks in the neighborhood of a symmetric tacnode
,”
Ann. Probab.
41
(
4
),
2599
2647
(
2013
).
46.
K.
Johansson
, “
Non-colliding Brownian motions and the extended tacnode process
,”
Commun. Math. Phys.
319
(
1
),
231
267
(
2013
).
47.
P. L.
Ferrari
and
B.
Vető
, “
The hard-edge tacnode process for a Brownian motion
,”
Electron. J. Probab.
22
,
1
32
(
2017
).
48.
A.
Borodin
and
M.
Duits
, “
Limits of determinantal processes near a tacnode
,”
Ann. Inst. Henri Poincare
47
,
243
258
(
2011
).
49.
E.
Duse
,
K.
Johansson
, and
A.
Metcalfe
, “
The cusp-Airy process
,”
Electron. J. Probab.
21
,
1
(
2016
); arXiv:1510.02057.
50.
M.
Adler
,
S.
Chhita
,
K.
Johansson
, and
P.
van Moerbeke
, “
Tacnode GUE-minor processes and double Aztec diamonds
,”
Probab. Theory Relat. Fields
162
(
1–2
),
275
325
(
2015
).
51.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
Tilings of non-convex Polygons, skew-Young Tableaux and determinantal processes
,”
Commun. Math. Phys.
364
,
287
342
(
2018
); arXiv:1609.06995.
52.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
Lozenge tilings of hexagons with cuts and asymptotic fluctuations: A new universality class
,”
Math. Phys., Anal. Geom.
21
(
53
),
9
(
2018
); arXiv:1706.01055.
53.
A.
Aggarwal
and
V.
Gorin
, “
Gaussian unitary ensemble in random lozenge tilings
,”
Probab. Theory Relat. Fields
184
(
3–4
),
1139
1166
(
2022
); arXiv:2106.07589.
54.
A.
Aggarwal
and
J.
Huang
, “
Edge statistics for lozenge tilings of polygons, II: Airy line ensemble
,” arXiv:2108.12874.
55.
A.
Aggarwal
, “
Universality for lozenge tiling local statistics
,” arXiv:1907.09991.
56.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
A singular Toeplitz determinant and the discrete tacnode kernel for skew-Aztec rectangles
,”
Ann. Appl. Probab.
32
,
1234
1294
(
2022
); arXiv:1912.02511.
57.
M.
Adler
and
P.
van Moerbeke
, “
Coupled GUE-minor processes
,”
Int. Math. Res. Not.
2015
(
21
),
10987
11044
; arXiv:1312.3859.
58.
M.
Adler
and
P.
van Moerbeke
, “
Probability distributions related to tilings of non-convex polygons
,”
J. Math. Phys.
59
,
091418
(
2018
), Special Volume in Memory of Ludvig Faddeev; arXiv:1810.04692.
59.
C.
Krattenthaler
, “
Advanced determinant calculus
,” in
The Andrews Festschrift
, Séminaire Lotharingien de Combinatoire Vol. 42 (
European Math Society
,
1999
),
67
pp., paper B42q.
60.
P. A.
MacMahon
,
Combinatory Analysis
(
Cambridge University Press
,
1916
), Vol. 2; reprinted by Chelsea, New York, 1960.
61.
Yu.
Baryshnikov
, “
GUEs and queues
,”
Probab. Theory Relat. Fields
119
(
2
),
256
274
(
2001
).
62.
W.
Jokush
,
J.
Propp
, and
P.
Shor
, “
Random domino tilings and the arctic circle theorem
,” arXiv:math/9801068.
63.
A.
Borodin
,
Determinantal Point Processes
, The Oxford Handbook of Random Matrix Theory (
Oxford University Press
,
Oxford
,
2011
), pp.
231
249
.
64.
A.
Borodin
,
V.
Gorin
, and
E. M.
Rains
, “
q-distributions on boxed plane partitions
,”
Sel. Math.
16
,
731
789
(
2010
).
65.
M.
Defosseux
, “
Orbit measures, random matrix theory and interlaced determinantal processes
,”
Ann. Inst. Henri Poincare
46
,
209
249
(
2010
).
66.
A. P.
Metcalfe
, “
Universality properties of Gelfand–Tsetlin patterns
,”
Probab. Theory Relat. Fields
155
(
1–2
),
303
346
(
2013
).
67.
V. E.
Gorin
, “
Bulk universality for random lozenge tilings near straight boundaries and for tensor products
,”
Commun. Math. Phys.
354
(
1
),
317
344
(
2017
); arXiv:1603.02707.
68.
J.
Novak
, “
Lozenge tilings and Hurwitz numbers
,”
J. Stat. Phys.
161
,
509
517
(
2015
); arXiv:math/0309074.
69.
V. E.
Gorin
and
L.
Petrov
, “
Universality of local statistics for noncolliding random walks
,”
Ann. Probab.
47
(
5
),
2686
2753
(
2019
); arXiv:1608.3243.
70.
D.
Betea
,
J.
Bouttier
,
P.
Nejjar
, and
M.
Vuletić
, “
The free boundary Schur process and applications I
,”
Ann. Henri Poincare
19
(
12
),
3663
3742
(
2018
); arXiv:1704.05809.
71.
A.
Borodin
,
P. L.
Ferrari
,
M.
Prähofer
, and
T.
Sasamoto
, “
Fluctuation properties of the TASEP with periodic initial configuration
,”
J. Stat. Phys.
129
,
1055
(
2007
); arXiv:math-ph/0608056.
72.
A.
Borodin
and
E. M.
Rains
, “
Eynard–Mehta theorem, Schur process, and their Pfaffian analogs
,”
J. Stat. Phys.
121
(
3–4
),
291
317
(
2005
); arXiv:math-ph/0409059.
73.
S.
Delvaux
,
A. B. J.
Kuijlaars
, and
L.
Zhang
, “
Critical behavior of non-intersecting Brownian motions at a tacnode
,”
Commun. Pure Appl. Math.
64
,
1305
1383
(
2011
).
74.
S.
Delvaux
and
B.
Vetö
, “
The hard edge tacnode process and the hard edge Pearcey process with non-intersecting squared Bessel paths
,”
Random Matrix Theory Appl.
4
,
1550008
(
2015
).
75.
S.
Delvaux
, “
The tacnode kernel: Equality of Riemann–Hilbert and Airy resolvent formulas
,”
Int. Math. Res. Not.
2018
,
190
; arXiv:1211.4845.
76.
P. L.
Ferrari
and
B.
Vető
, “
Fluctuations of the Arctic curve in the tilings of the Aztec diamond on restricted domains
,”
Ann. Appl. Probab.
31
(
1
),
284
320
(
2021
); arXiv:1909.10840.
You do not currently have access to this content.