We show that the sublinear bound of the bad Green’s functions implies explicit logarithmic bounds of moments for long range operators in arbitrary dimension.

1.
H. L.
Cycon
,
R. G.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry
, Texts and Monographs in Physics, Study edition (
Springer-Verlag
,
Berlin
,
1987
).
2.
Y.
Last
, “
Quantum dynamics and decompositions of singular continuous spectra
,”
J. Funct. Anal.
142
(
2
),
406
445
(
1996
).
3.
M.
Aizenman
, “
Localization at weak disorder: Some elementary bounds
,”
Rev. Math. Phys.
06
,
1163
1182
(
1994
), special issue dedicated to Elliott H. Lieb.
4.
M.
Aizenman
and
S.
Molchanov
, “
Localization at large disorder and at extreme energies: An elementary derivation
,”
Commun. Math. Phys.
157
(
2
),
245
278
(
1993
).
5.
J.
Bourgain
and
C. E.
Kenig
, “
On localization in the continuous Anderson-Bernoulli model in higher dimension
,”
Invent. Math.
161
(
2
),
389
426
(
2005
).
6.
V.
Bucaj
,
D.
Damanik
,
J.
Fillman
,
V.
Gerbuz
,
T.
VandenBoom
,
F.
Wang
, and
Z.
Zhang
, “
Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent
,”
Trans. Am. Math. Soc.
372
(
5
),
3619
3667
(
2019
).
7.
R.
Carmona
,
A.
Klein
, and
F.
Martinelli
, “
Anderson localization for Bernoulli and other singular potentials
,”
Commun. Math. Phys.
108
(
1
),
41
66
(
1987
).
8.
D.
Damanik
and
P.
Stollmann
, “
Multi-scale analysis implies strong dynamical localization
,”
Geom. Funct. Anal.
11
(
1
),
11
29
(
2001
).
9.
J.
Ding
and
C. K.
Smart
, “
Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice
,”
Invent. Math.
219
(
2
),
467
506
(
2020
).
10.
A.
Elgart
and
A.
Klein
, “
An eigensystem approach to Anderson localization
,”
J. Funct. Anal.
271
(
12
),
3465
3512
(
2016
).
11.
A.
Elgart
and
A.
Klein
, “
Eigensystem multiscale analysis for Anderson localization in energy intervals
,”
J. Spectr. Theory
9
(
2
),
711
765
(
2019
).
12.
A.
Elgart
and
A.
Klein
, “
Eigensystem multiscale analysis for the Anderson model via the Wegner estimate
,”
Ann. Henri Poincaré
21
(
7
),
2301
2326
(
2020
).
13.
J.
Fröhlich
,
F.
Martinelli
,
E.
Scoppola
, and
T.
Spencer
, “
Constructive proof of localization in the Anderson tight binding model
,”
Commun. Math. Phys.
101
(
1
),
21
46
(
1985
).
14.
J.
Fröhlich
and
T.
Spencer
, “
Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,”
Commun. Math. Phys.
88
(
2
),
151
184
(
1983
).
15.
F.
Germinet
and
S.
de Bièvre
, “
Localisation dynamique et opérateurs de Schrödinger aléatoires
,”
C. R. Acad. Sci. Paris Sér. I Math.
326
(
2
),
261
264
(
1998
).
16.
F.
Germinet
and
A.
Klein
, “
Bootstrap multiscale analysis and localization in random media
,”
Commun. Math. Phys.
222
(
2
),
415
448
(
2001
).
17.
F.
Germinet
and
A.
Klein
, “
Explicit finite volume criteria for localization in continuous random media and applications
,”
Geom. Funct. Anal.
13
(
6
),
1201
1238
(
2003
).
18.
F.
Germinet
and
A.
Klein
, “
A comprehensive proof of localization for continuous Anderson models with singular random potentials
,”
J. Eur. Math. Soc.
15
(
1
),
53
143
(
2013
).
19.
I. J.
Goldsheid
,
S. A.
Molčanov
, and
L. A.
Pastur
, “
A random homogeneous Schrödinger operator has a pure point spectrum
,”
Funkcional. Anal. i Priložen.
11
(
1
),
1
10
, 96 (
1977
).
20.
S.
Jitomirskaya
and
X.
Zhu
, “
Large deviations of the Lyapunov exponent and localization for the 1D Anderson model
,”
Commun. Math. Phys.
370
(
1
),
311
324
(
2019
).
21.
A.
Klein
and
S. T.
Nguyen
, “
The bootstrap multiscale analysis of the multi-particle Anderson model
,”
J. Stat. Phys.
151
(
5
),
938
973
(
2013
).
22.
A.
Klein
and
S.
Nguyen
, “
Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians
,”
J. Spectr. Theory
5
(
2
),
399
444
(
2015
).
23.
A.
Klein
and
C. S. S.
Tsang
, “
Eigensystem bootstrap multiscale analysis for the Anderson model
,”
J. Spectr. Theory
8
(
3
),
1149
1197
(
2018
).
24.
H.
Kunz
and
B.
Souillard
, “
Sur le spectre des opérateurs aux différences finies aléatoires
,”
Commun. Math. Phys.
78
(
2
),
201
246
(
1980
).
25.
L.
Li
and
L.
Zhang
, “
Anderson–Bernoulli localization on the three-dimensional lattice and discrete unique continuation principle
,”
Duke Math. J.
171
(
2
),
327
415
(
2022
).
26.
H.
von Dreifus
and
A.
Klein
, “
A new proof of localization in the Anderson tight binding model
,”
Commun. Math. Phys.
124
(
2
),
285
299
(
1989
).
27.
M.
Aizenman
,
A.
Elgart
,
S.
Naboko
,
J. H.
Schenker
, and
G.
Stolz
, “
Moment analysis for localization in random Schrödinger operators
,”
Invent. Math.
163
(
2
),
343
413
(
2006
).
28.
A.
Elgart
and
A.
Klein
, “
Ground state energy of trimmed discrete Schrödinger operators and localization for trimmed Anderson models
,”
J. Spectr. Theory
4
(
2
),
391
413
(
2014
).
29.
A.
Elgart
,
A.
Klein
, and
G.
Stolz
, “
Manifestations of dynamical localization in the disordered XXZ spin chain
,”
Commun. Math. Phys.
361
(
3
),
1083
1113
(
2018
).
30.
A.
Elgart
,
A.
Klein
, and
G.
Stolz
, “
Many-body localization in the droplet spectrum of the random XXZ quantum spin chain
,”
J. Funct. Anal.
275
(
1
),
211
258
(
2018
).
31.
F.
Germinet
,
P. D.
Hislop
, and
A.
Klein
, “
Localization for Schrödinger operators with Poisson random potential
,”
J. Eur. Math. Soc.
9
(
3
),
577
607
(
2007
).
32.
F.
Germinet
,
A.
Klein
, and
J. H.
Schenker
, “
Dynamical delocalization in random Landau Hamiltonians
,”
Ann. Math.
166
(
1
),
215
244
(
2007
).
33.
F.
Germinet
,
A.
Klein
, and
J. H.
Schenker
, “
Quantization of the Hall conductance and delocalization in ergodic Landau Hamiltonians
,”
Rev. Math. Phys.
21
(
08
),
1045
1080
(
2009
).
34.
A.
Klein
and
C.
Sadel
, “
Absolutely continuous spectrum for random Schrödinger operators on the Bethe strip
,”
Math. Nachr.
285
(
1
),
5
26
(
2012
).
35.
F.
Germinet
and
A.
Klein
, “
A characterization of the Anderson metal-insulator transport transition
,”
Duke Math. J.
124
(
2
),
309
350
(
2004
).
36.
S.
Jitomirskaya
and
H.
Schulz-Baldes
, “
Upper bounds on wavepacket spreading for random Jacobi matrices
,”
Commun. Math. Phys.
273
(
3
),
601
618
(
2007
).
37.
S.
Jitomirskaya
,
H.
Schulz-Baldes
, and
G.
Stolz
, “
Delocalization in random polymer models
,”
Commun. Math. Phys.
233
(
1
),
27
48
(
2003
).
38.
A.
Klein
,
S. T.
Nguyen
, and
C.
Rojas-Molina
, “
Characterization of the metal-insulator transport transition for the two-particle Anderson model
,”
Ann. Henri Poincaré
18
(
7
),
2327
2365
(
2017
).
39.
A.
Klein
and
C.
Sadel
, “
Ballistic behavior for random Schrödinger operators on the Bethe strip
,”
J. Spectr. Theory
1
(
4
),
409
442
(
2011
).
40.
C.
Rojas-Molina
, “
Characterization of the Anderson metal-insulator transition for non ergodic operators and application
,”
Ann. Henri Poincaré
13
(
7
),
1575
1611
(
2012
).
41.
A.
Avila
,
J.
You
, and
Q.
Zhou
, “
Sharp phase transitions for the almost Mathieu operator
,”
Duke Math. J.
166
(
14
),
2697
2718
(
2017
).
42.
J.
Avron
and
B.
Simon
, “
Singular continuous spectrum for a class of almost periodic Jacobi matrices
,”
Bull. Am. Math. Soc.
6
(
1
),
81
85
(
1982
).
43.
A. Y.
Gordon
, “
The point spectrum of the one-dimensional Schrödinger operator
,”
Usp. Mat. Nauk
31
(
4
),
257
258
(
1976
).
44.
S.
Jitomirskaya
and
W.
Liu
, “
Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,”
J. Eur. Math. Soc.
(Unpublished).
45.
S.
Jitomirskaya
and
W.
Liu
, “
Universal hierarchical structure of quasiperiodic eigenfunctions
,”
Ann. Math.
187
(
3
),
721
776
(
2018
).
46.
S.
Jitomirskaya
and
B.
Simon
, “
Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators
,”
Commun. Math. Phys.
165
(
1
),
201
205
(
1994
).
47.
P.
Sarnak
, “
Spectral behavior of quasiperiodic potentials
,”
Commun. Math. Phys.
84
(
3
),
377
401
(
1982
).
48.
D.
Damanik
and
S.
Tcheremchantsev
, “
Upper bounds in quantum dynamics
,”
J. Am. Math. Soc.
20
(
3
),
799
827
(
2007
).
49.
D.
Damanik
and
S.
Tcheremchantsev
, “
Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian
,”
J. Funct. Anal.
255
(
10
),
2872
2887
(
2008
).
50.
R.
Han
and
S.
Jitomirskaya
, “
Quantum dynamical bounds for ergodic potentials with underlying dynamics of zero topological entropy
,”
Anal. PDE
12
(
4
),
867
902
(
2019
).
51.
S.
Jitomirskaya
and
R.
Mavi
, “
Dynamical bounds for quasiperiodic Schrödinger operators with rough potentials
,”
Int. Math. Res. Not.
2017
(
1
),
96
120
.
52.
S.
Jitomirskaya
and
M.
Powell
, “
Logarithmic quantum dynamical bounds for arithmetically defined ergodic Schrödinger operators with smooth potentials
,” in
Analysis at Large: Dedicated to the Life and Work of Jean Bourgain
(
Springer
,
2022
), pp.
173
201
.
53.
M.
Shamis
and
S.
Sodin
, “
Upper bounds on quantum dynamics in arbitrary dimension
,” arXiv:2111.10902 (
2021
).
54.
S.
Jitomirskaya
and
S.
Zhang
, “
Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators
,”
J. Eur. Math. Soc.
24
(
5
),
1723
1767
(
2022
).
55.
S. Y.
Jitomirskaya
and
Y.
Last
, “
Power law subordinacy and singular spectra. II. Line operators
,”
Commun. Math. Phys.
211
(
3
),
643
658
(
2000
).
56.
S.
Jitomirskaya
and
W.
Liu
, “
Upper bounds on transport exponents for long-range operators
,”
J. Math. Phys.
62
(
7
),
073506
(
2021
).
57.
W.
Liu
, “
Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices
,”
Anal. PDE
15
(
8
),
2061
2108
(
2022
).
58.
J.
Bourgain
.
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (
Princeton University Press
,
Princeton, NJ
,
2005
).
59.
J.
Bourgain
, “
Anderson localization for quasi-periodic lattice Schrödinger operators on Zd, d arbitrary
,”
Geom. Funct. Anal.
17
(
3
),
682
706
(
2007
).
60.
J.
Bourgain
and
M.
Goldstein
, “
On nonperturbative localization with quasi-periodic potential
,”
Ann. Math.
152
(
3
),
835
879
(
2000
).
61.
J.
Bourgain
,
M.
Goldstein
, and
W.
Schlag
, “
Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential
,”
Acta Math.
188
(
1
),
41
86
(
2002
).
62.
J.
Bourgain
and
I.
Kachkovskiy
, “
Anderson localization for two interacting quasiperiodic particles
,”
Geom. Funct. Anal.
29
(
1
),
3
43
(
2019
).
63.
W.
Schlag
, “
An introduction to multiscale techniques in the theory of Anderson localization, Part I
,”
Nonlinear Anal.
220
,
112869
(
2022
).
64.
J.
Bourgain
,
M.
Goldstein
, and
W.
Schlag
, “
Anderson localization for Schrödinger operators on Z with potentials given by the skew-shift
,”
Commun. Math. Phys.
220
(
3
),
583
621
(
2001
).
65.
M.
Goldstein
and
W.
Schlag
, “
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions
,”
Ann. Math.
154
(
1
),
155
203
(
2001
).
66.
S.
Jitomirskaya
,
W.
Liu
, and
Y.
Shi
, “
Anderson localization for multi-frequency quasi-periodic operators on ZD
,”
Geom. Funct. Anal.
30
(
2
),
457
481
(
2020
).
67.
F.
Germinet
,
A.
Kiselev
, and
S.
Tcheremchantsev
, “
Transfer matrices and transport for Schrödinger operators
,”
Ann. Inst. Fourier
54
(
3
),
787
830
(
2004
).
68.
M.
Drmota
and
R. F.
Tichy
,
Sequences, Discrepancies and Applications
, Lecture Notes in Mathematics Vol. 1651 (
Springer-Verlag
,
Berlin
,
1997
).
69.
J.
Bourgain
, “
Positivity and continuity of the Lyapounov exponent for shifts on Td with arbitrary frequency vector and real analytic potential
,”
J. Anal. Math.
96
,
313
355
(
2005
).
70.
M.
Powell
, “
Continuity of the Lyapunov exponent for analytic multi-frequency quasiperiodic cocycles
,” arXiv:2210.09285 (
2022
).
71.
P.
Duarte
and
S.
Klein
, “
Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles
,”
J. Eur. Math. Soc.
21
(
7
),
2051
2106
(
2019
).
You do not currently have access to this content.