We show that the sublinear bound of the bad Green’s functions implies explicit logarithmic bounds of moments for long range operators in arbitrary dimension.
REFERENCES
1.
H. L.
Cycon
, R. G.
Froese
, W.
Kirsch
, and B.
Simon
, Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry
, Texts and Monographs in Physics, Study edition (Springer-Verlag
, Berlin
, 1987
).2.
Y.
Last
, “Quantum dynamics and decompositions of singular continuous spectra
,” J. Funct. Anal.
142
(2
), 406
–445
(1996
).3.
M.
Aizenman
, “Localization at weak disorder: Some elementary bounds
,” Rev. Math. Phys.
06
, 1163
–1182
(1994
), special issue dedicated to Elliott H. Lieb.4.
M.
Aizenman
and S.
Molchanov
, “Localization at large disorder and at extreme energies: An elementary derivation
,” Commun. Math. Phys.
157
(2
), 245
–278
(1993
).5.
J.
Bourgain
and C. E.
Kenig
, “On localization in the continuous Anderson-Bernoulli model in higher dimension
,” Invent. Math.
161
(2
), 389
–426
(2005
).6.
V.
Bucaj
, D.
Damanik
, J.
Fillman
, V.
Gerbuz
, T.
VandenBoom
, F.
Wang
, and Z.
Zhang
, “Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent
,” Trans. Am. Math. Soc.
372
(5
), 3619
–3667
(2019
).7.
R.
Carmona
, A.
Klein
, and F.
Martinelli
, “Anderson localization for Bernoulli and other singular potentials
,” Commun. Math. Phys.
108
(1
), 41
–66
(1987
).8.
D.
Damanik
and P.
Stollmann
, “Multi-scale analysis implies strong dynamical localization
,” Geom. Funct. Anal.
11
(1
), 11
–29
(2001
).9.
J.
Ding
and C. K.
Smart
, “Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice
,” Invent. Math.
219
(2
), 467
–506
(2020
).10.
A.
Elgart
and A.
Klein
, “An eigensystem approach to Anderson localization
,” J. Funct. Anal.
271
(12
), 3465
–3512
(2016
).11.
A.
Elgart
and A.
Klein
, “Eigensystem multiscale analysis for Anderson localization in energy intervals
,” J. Spectr. Theory
9
(2
), 711
–765
(2019
).12.
A.
Elgart
and A.
Klein
, “Eigensystem multiscale analysis for the Anderson model via the Wegner estimate
,” Ann. Henri Poincaré
21
(7
), 2301
–2326
(2020
).13.
J.
Fröhlich
, F.
Martinelli
, E.
Scoppola
, and T.
Spencer
, “Constructive proof of localization in the Anderson tight binding model
,” Commun. Math. Phys.
101
(1
), 21
–46
(1985
).14.
J.
Fröhlich
and T.
Spencer
, “Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,” Commun. Math. Phys.
88
(2
), 151
–184
(1983
).15.
F.
Germinet
and S.
de Bièvre
, “Localisation dynamique et opérateurs de Schrödinger aléatoires
,” C. R. Acad. Sci. Paris Sér. I Math.
326
(2
), 261
–264
(1998
).16.
F.
Germinet
and A.
Klein
, “Bootstrap multiscale analysis and localization in random media
,” Commun. Math. Phys.
222
(2
), 415
–448
(2001
).17.
F.
Germinet
and A.
Klein
, “Explicit finite volume criteria for localization in continuous random media and applications
,” Geom. Funct. Anal.
13
(6
), 1201
–1238
(2003
).18.
F.
Germinet
and A.
Klein
, “A comprehensive proof of localization for continuous Anderson models with singular random potentials
,” J. Eur. Math. Soc.
15
(1
), 53
–143
(2013
).19.
I. J.
Goldsheid
, S. A.
Molčanov
, and L. A.
Pastur
, “A random homogeneous Schrödinger operator has a pure point spectrum
,” Funkcional. Anal. i Priložen.
11
(1
), 1
–10
, 96 (1977
).20.
S.
Jitomirskaya
and X.
Zhu
, “Large deviations of the Lyapunov exponent and localization for the 1D Anderson model
,” Commun. Math. Phys.
370
(1
), 311
–324
(2019
).21.
A.
Klein
and S. T.
Nguyen
, “The bootstrap multiscale analysis of the multi-particle Anderson model
,” J. Stat. Phys.
151
(5
), 938
–973
(2013
).22.
A.
Klein
and S.
Nguyen
, “Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians
,” J. Spectr. Theory
5
(2
), 399
–444
(2015
).23.
A.
Klein
and C. S. S.
Tsang
, “Eigensystem bootstrap multiscale analysis for the Anderson model
,” J. Spectr. Theory
8
(3
), 1149
–1197
(2018
).24.
H.
Kunz
and B.
Souillard
, “Sur le spectre des opérateurs aux différences finies aléatoires
,” Commun. Math. Phys.
78
(2
), 201
–246
(1980
).25.
L.
Li
and L.
Zhang
, “Anderson–Bernoulli localization on the three-dimensional lattice and discrete unique continuation principle
,” Duke Math. J.
171
(2
), 327
–415
(2022
).26.
H.
von Dreifus
and A.
Klein
, “A new proof of localization in the Anderson tight binding model
,” Commun. Math. Phys.
124
(2
), 285
–299
(1989
).27.
M.
Aizenman
, A.
Elgart
, S.
Naboko
, J. H.
Schenker
, and G.
Stolz
, “Moment analysis for localization in random Schrödinger operators
,” Invent. Math.
163
(2
), 343
–413
(2006
).28.
A.
Elgart
and A.
Klein
, “Ground state energy of trimmed discrete Schrödinger operators and localization for trimmed Anderson models
,” J. Spectr. Theory
4
(2
), 391
–413
(2014
).29.
A.
Elgart
, A.
Klein
, and G.
Stolz
, “Manifestations of dynamical localization in the disordered XXZ spin chain
,” Commun. Math. Phys.
361
(3
), 1083
–1113
(2018
).30.
A.
Elgart
, A.
Klein
, and G.
Stolz
, “Many-body localization in the droplet spectrum of the random XXZ quantum spin chain
,” J. Funct. Anal.
275
(1
), 211
–258
(2018
).31.
F.
Germinet
, P. D.
Hislop
, and A.
Klein
, “Localization for Schrödinger operators with Poisson random potential
,” J. Eur. Math. Soc.
9
(3
), 577
–607
(2007
).32.
F.
Germinet
, A.
Klein
, and J. H.
Schenker
, “Dynamical delocalization in random Landau Hamiltonians
,” Ann. Math.
166
(1
), 215
–244
(2007
).33.
F.
Germinet
, A.
Klein
, and J. H.
Schenker
, “Quantization of the Hall conductance and delocalization in ergodic Landau Hamiltonians
,” Rev. Math. Phys.
21
(08
), 1045
–1080
(2009
).34.
A.
Klein
and C.
Sadel
, “Absolutely continuous spectrum for random Schrödinger operators on the Bethe strip
,” Math. Nachr.
285
(1
), 5
–26
(2012
).35.
F.
Germinet
and A.
Klein
, “A characterization of the Anderson metal-insulator transport transition
,” Duke Math. J.
124
(2
), 309
–350
(2004
).36.
S.
Jitomirskaya
and H.
Schulz-Baldes
, “Upper bounds on wavepacket spreading for random Jacobi matrices
,” Commun. Math. Phys.
273
(3
), 601
–618
(2007
).37.
S.
Jitomirskaya
, H.
Schulz-Baldes
, and G.
Stolz
, “Delocalization in random polymer models
,” Commun. Math. Phys.
233
(1
), 27
–48
(2003
).38.
A.
Klein
, S. T.
Nguyen
, and C.
Rojas-Molina
, “Characterization of the metal-insulator transport transition for the two-particle Anderson model
,” Ann. Henri Poincaré
18
(7
), 2327
–2365
(2017
).39.
A.
Klein
and C.
Sadel
, “Ballistic behavior for random Schrödinger operators on the Bethe strip
,” J. Spectr. Theory
1
(4
), 409
–442
(2011
).40.
C.
Rojas-Molina
, “Characterization of the Anderson metal-insulator transition for non ergodic operators and application
,” Ann. Henri Poincaré
13
(7
), 1575
–1611
(2012
).41.
A.
Avila
, J.
You
, and Q.
Zhou
, “Sharp phase transitions for the almost Mathieu operator
,” Duke Math. J.
166
(14
), 2697
–2718
(2017
).42.
J.
Avron
and B.
Simon
, “Singular continuous spectrum for a class of almost periodic Jacobi matrices
,” Bull. Am. Math. Soc.
6
(1
), 81
–85
(1982
).43.
A. Y.
Gordon
, “The point spectrum of the one-dimensional Schrödinger operator
,” Usp. Mat. Nauk
31
(4
), 257
–258
(1976
).44.
S.
Jitomirskaya
and W.
Liu
, “Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,” J. Eur. Math. Soc.
(Unpublished).45.
S.
Jitomirskaya
and W.
Liu
, “Universal hierarchical structure of quasiperiodic eigenfunctions
,” Ann. Math.
187
(3
), 721
–776
(2018
).46.
S.
Jitomirskaya
and B.
Simon
, “Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators
,” Commun. Math. Phys.
165
(1
), 201
–205
(1994
).47.
P.
Sarnak
, “Spectral behavior of quasiperiodic potentials
,” Commun. Math. Phys.
84
(3
), 377
–401
(1982
).48.
D.
Damanik
and S.
Tcheremchantsev
, “Upper bounds in quantum dynamics
,” J. Am. Math. Soc.
20
(3
), 799
–827
(2007
).49.
D.
Damanik
and S.
Tcheremchantsev
, “Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian
,” J. Funct. Anal.
255
(10
), 2872
–2887
(2008
).50.
R.
Han
and S.
Jitomirskaya
, “Quantum dynamical bounds for ergodic potentials with underlying dynamics of zero topological entropy
,” Anal. PDE
12
(4
), 867
–902
(2019
).51.
S.
Jitomirskaya
and R.
Mavi
, “Dynamical bounds for quasiperiodic Schrödinger operators with rough potentials
,” Int. Math. Res. Not.
2017
(1
), 96
–120
.52.
S.
Jitomirskaya
and M.
Powell
, “Logarithmic quantum dynamical bounds for arithmetically defined ergodic Schrödinger operators with smooth potentials
,” in Analysis at Large: Dedicated to the Life and Work of Jean Bourgain
(Springer
, 2022
), pp. 173
–201
.53.
M.
Shamis
and S.
Sodin
, “Upper bounds on quantum dynamics in arbitrary dimension
,” arXiv:2111.10902 (2021
).54.
S.
Jitomirskaya
and S.
Zhang
, “Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators
,” J. Eur. Math. Soc.
24
(5
), 1723
–1767
(2022
).55.
S. Y.
Jitomirskaya
and Y.
Last
, “Power law subordinacy and singular spectra. II. Line operators
,” Commun. Math. Phys.
211
(3
), 643
–658
(2000
).56.
S.
Jitomirskaya
and W.
Liu
, “Upper bounds on transport exponents for long-range operators
,” J. Math. Phys.
62
(7
), 073506
(2021
).57.
W.
Liu
, “Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices
,” Anal. PDE
15
(8
), 2061
–2108
(2022
).58.
J.
Bourgain
. Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (Princeton University Press
, Princeton, NJ
, 2005
).59.
J.
Bourgain
, “Anderson localization for quasi-periodic lattice Schrödinger operators on , d arbitrary
,” Geom. Funct. Anal.
17
(3
), 682
–706
(2007
).60.
J.
Bourgain
and M.
Goldstein
, “On nonperturbative localization with quasi-periodic potential
,” Ann. Math.
152
(3
), 835
–879
(2000
).61.
J.
Bourgain
, M.
Goldstein
, and W.
Schlag
, “Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential
,” Acta Math.
188
(1
), 41
–86
(2002
).62.
J.
Bourgain
and I.
Kachkovskiy
, “Anderson localization for two interacting quasiperiodic particles
,” Geom. Funct. Anal.
29
(1
), 3
–43
(2019
).63.
W.
Schlag
, “An introduction to multiscale techniques in the theory of Anderson localization, Part I
,” Nonlinear Anal.
220
, 112869
(2022
).64.
J.
Bourgain
, M.
Goldstein
, and W.
Schlag
, “Anderson localization for Schrödinger operators on with potentials given by the skew-shift
,” Commun. Math. Phys.
220
(3
), 583
–621
(2001
).65.
M.
Goldstein
and W.
Schlag
, “Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions
,” Ann. Math.
154
(1
), 155
–203
(2001
).66.
S.
Jitomirskaya
, W.
Liu
, and Y.
Shi
, “Anderson localization for multi-frequency quasi-periodic operators on
,” Geom. Funct. Anal.
30
(2
), 457
–481
(2020
).67.
F.
Germinet
, A.
Kiselev
, and S.
Tcheremchantsev
, “Transfer matrices and transport for Schrödinger operators
,” Ann. Inst. Fourier
54
(3
), 787
–830
(2004
).68.
M.
Drmota
and R. F.
Tichy
, Sequences, Discrepancies and Applications
, Lecture Notes in Mathematics Vol. 1651 (Springer-Verlag
, Berlin
, 1997
).69.
J.
Bourgain
, “Positivity and continuity of the Lyapounov exponent for shifts on with arbitrary frequency vector and real analytic potential
,” J. Anal. Math.
96
, 313
–355
(2005
).70.
M.
Powell
, “Continuity of the Lyapunov exponent for analytic multi-frequency quasiperiodic cocycles
,” arXiv:2210.09285 (2022
).71.
P.
Duarte
and S.
Klein
, “Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles
,” J. Eur. Math. Soc.
21
(7
), 2051
–2106
(2019
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.