This paper provides a new geometric framework to describe non-conservative field theories with explicit dependence on the space–time coordinates by combining the k-cosymplectic and k-contact formulations. This geometric framework, the k-cocontact geometry, permits the development of Hamiltonian and Lagrangian formalisms for these field theories. We also compare this new formulation in the autonomous case with the previous k-contact formalism. To illustrate the theory, we study the nonlinear damped wave equation with external time-dependent forcing.

1.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, AMS Chelsea Publishing Vol. 364, 2nd ed. (
Benjamin/Cummings Pub. Co.
,
New York
,
1978
).
2.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
, Graduate Texts in Mathematics Vol. 60, 2nd ed. (
Springer
,
New York
,
1989
).
3.
A.
Awane
, “
k-symplectic structures
,”
J. Math. Phys.
33
(
12
),
4046
(
1992
).
4.
J. F.
Cariñena
,
M.
Crampin
, and
L. A.
Ibort
, “
On the multisymplectic formalism for first order field theories
,”
Differ. Geom. Appl.
1
(
4
),
345
374
(
1991
).
5.
M.
de León
and
P. R.
Rodrigues
,
Methods of Differential Geometry in Analytical Mechanics
, Mathematics Studies Vol. 158 (
North-Holland
,
Amsterdam
,
1989
).
6.
M.
de León
,
M.
Salgado
, and
S.
Vilariño
,
Methods of Differential Geometry in Classical Field Theories
(
World Scientific
,
2015
).
7.
J.
Kijowski
, “
A finite-dimensional canonical formalism in the classical field theory
,”
Commun. Math. Phys.
30
(
2
),
99
128
(
1973
).
8.
J.
Kijowski
and
W. M.
Tulczyjew
,
A Symplectic Framework for Field Theories
, Lecture Notes in Physics Vol. 107, 1st ed. (
Springer-Verlag
,
Berlin, Heidelberg
,
1979
).
9.
P.
Libermann
and
C.-M.
Marle
,
Symplectic Geometry and Analytical Mechanics
(
Springer Netherlands, Reidel
,
Dordretch
,
1987
).
10.
N.
Román-Roy
,
Á. M.
Rey
,
M.
Salgado
, and
S.
Vilariño
, “
On the k-symplectic, k-cosymplectic and multisymplectic formalisms of classical field theories
,”
J. Geom. Mech.
3
(
1
),
113
137
(
2011
).
11.
A.
Banyaga
and
D. F.
Houenou
,
A Brief Introduction to Symplectic and Contact Manifolds
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2016
), Vol. 15.
12.
H.
Geiges
,
An Introduction to Contact Topology
, Cambridge Studies in Advanced Mathematics Vol. 109 (
Cambridge University Press
,
2008
).
13.
A. L.
Kholodenko
,
Applications of Contact Geometry and Topology in Physics
(
World Scientific
,
2013
).
14.
A.
Bravetti
, “
Contact Hamiltonian dynamics: The concept and its use
,”
Entropy
19
(
10
),
535
(
2017
).
15.
A.
Bravetti
,
H.
Cruz
, and
D.
Tapias
, “
Contact Hamiltonian mechanics
,”
Ann. Phys.
376
,
17
39
(
2017
).
16.
J. F.
Cariñena
and
P.
Guha
, “
Nonstandard Hamiltonian structures of the Liénard equation and contact geometry
,”
Int. J. Geom. Methods Mod. Phys.
16
(
supp01
),
1940001
(
2019
).
17.
M.
de León
and
M.
Lainz Valcázar
, “
Contact Hamiltonian systems
,”
J. Math. Phys.
60
(
10
),
102902
(
2019
).
18.
J.
Gaset
,
X.
Gràcia
,
M. C.
Muñoz-Lecanda
,
X.
Rivas
, and
N.
Román-Roy
, “
New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries
,”
Int. J. Geom. Methods Mod. Phys.
17
(
6
),
2050090
(
2020
).
19.
Q.
Liu
,
P. J.
Torres
, and
C.
Wang
, “
Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behaviour
,”
Ann. Phys.
395
,
26
44
(
2018
).
20.
A.
Bravetti
, “
Contact geometry and thermodynamics
,”
Int. J. Geom. Methods Mod. Phys.
16
(
supp01
),
1940003
(
2018
).
21.
A. A.
Simoes
,
M.
de León
,
M.
Lainz-Valcázar
, and
D.
Martín de Diego
, “
Contact geometry for simple thermodynamical systems with friction
,”
Proc. R. Soc. A
476
,
20200244
(
2020
).
22.
F. M.
Ciaglia
,
H.
Cruz
, and
G.
Marmo
, “
Contact manifolds and dissipation, classical and quantum
,”
Ann. Phys.
398
,
159
179
(
2018
).
23.
S.-i.
Goto
, “
Contact geometric descriptions of vector fields on dually flat spaces and their applications in electric circuit models and nonequilibrium statistical mechanics
,”
J. Math. Phys.
57
(
10
),
102702
(
2016
).
24.
H.
Ramirez
,
B.
Maschke
, and
D.
Sbarbaro
, “
Partial stabilization of input-output contact systems on a Legendre submanifold
,”
IEEE Trans. Autom. Control
62
(
3
),
1431
1437
(
2017
).
25.
A.
Bravetti
,
M.
de León
,
J. C.
Marrero
, and
E.
Padrón
, “
Invariant measures for contact Hamiltonian systems: Symplectic sandwiches with contact bread
,”
J. Phys. A: Math. Theor.
53
,
455205
(
2020
).
26.
M.
de León
,
M.
Lainz
, and
M. C.
Muñoz-Lecanda
, “
The Herglotz principle and vakonomic dynamics
,” in
Geometric Science of Information
, Lecture Notes in Computer Science Vol. 12829, edited by
F.
Nielsen
and
F.
Barbaresco
(
Springer International Publishing
,
Cham
,
2021
), pp.
183
190
.
27.
M.
de León
,
M.
Lainz-Valcázar
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, “
Constrained Lagrangian dissipative contact dynamics
,”
J. Math. Phys.
62
,
122902
(
2021
).
28.
M.
de León
,
M.
Laínz
,
A.
López-Gordón
, and
X.
Rivas
, “
Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems
,”
J. Geom. Phys.
187
,
104787
(
2023
).
29.
K.
Grabowska
and
J.
Grabowski
, “
A geometric approach to contact Hamiltonians and contact Hamilton–Jacobi theory
,”
J. Phys. A: Math. Theor.
55
,
435204
(
2022
).
30.
K.
Grabowska
and
J.
Grabowski
, “
Contact geometric mechanics: The Tulczyjew triples
,” arXiv:2209.03154 (
2022
).
31.
M.
de León
,
J.
Gaset
,
X.
Gràcia
,
M.
Muñoz-Lecanda
, and
X.
Rivas
, “
Time-dependent contact mechanics
,”
Monatsh. Math.
(published online
2022
).
32.
X.
Rivas
and
D.
Torres
, “
Lagrangian–Hamiltonian formalism for cocontact systems
,”
J. Geom. Mech.
15
(
1
),
1
26
(
2022
).
33.
J.
de Lucas
and
X.
Rivas
, “
Contact Lie systems: Theory and applications
,” arXiv:2207.04038 (
2022
).
34.
J.
Gaset
,
X.
Gràcia
,
M. C.
Muñoz-Lecanda
,
X.
Rivas
, and
N.
Román-Roy
, “
A contact geometry framework for field theories with dissipation
,”
Ann. Phys.
414
,
168092
(
2020
).
35.
J.
Gaset
,
X.
Gràcia
,
M. C.
Muñoz-Lecanda
,
X.
Rivas
, and
N.
Román-Roy
, “
A k-contact Lagrangian formulation for nonconservative field theories
,”
Rep. Math. Phys.
87
(
3
),
347
368
(
2021
).
36.
X.
Gràcia
,
X.
Rivas
, and
N.
Román-Roy
, “
Skinner–Rusk formalism for k-contact systems
,”
J. Geom. Phys.
172
,
104429
(
2022
).
37.
M.
de León
,
E.
Merino
,
J. A.
Oubiña
,
P. R.
Rodrigues
, and
M. R.
Salgado
, “
Hamiltonian systems on k-cosymplectic manifolds
,”
J. Math. Phys.
39
(
2
),
876
(
1998
).
38.
M.
de León
,
E.
Merino
, and
M.
Salgado
, “
k-cosymplectic manifolds and Lagrangian field theories
,”
J. Math. Phys.
42
(
5
),
2092
(
2001
).
39.
G.
Herglotz
,
Berührungstransformationen
(
Lectures at the University of Göttingen
,
1930
).
40.
J.
Gaset
,
M.
Lainz
,
A.
Mas
, and
X.
Rivas
, “
The Herglotz variational principle for dissipative field theories
,” arXiv:2211.17058 (
2022
).
41.
X.
Rivas
, “
Geometrical aspects of contact mechanical systems and field theories
,” Ph.D. thesis,
Universitat Politècnica de Catalunya (UPC)
,
2021
, http://hdl.handle.net/10803/673385.
42.
J. M.
Lee
,
Introduction to Smooth Manifolds
, Graduate Texts in Mathematics Vol. 218, 2nd ed. (
Springer
,
New York, Heidelberg, Dordrecht, London
,
2013
).
43.
X.
Gràcia
, “
Fibre derivatives: Some applications to singular Lagrangians
,”
Rep. Math. Phys.
45
(
1
),
67
84
(
2000
).
44.
M.
de León
,
J.
Gaset
,
M. C.
Muñoz-Lecanda
,
X.
Rivas
, and
N.
Román-Roy
, “
Multicontact formalism for non-conservative field theories
,”
J. Phys. A: Math. Theor.
56
(
2
),
025201
(
2022
).
45.
M.
de León
,
J. C.
Marrero
, and
D.
Martín de Diego
, “
Some applications of semi-discrete variational integrators to classical field theories
,”
Qual. Theory Dyn. Syst.
7
,
195
212
(
2008
).
You do not currently have access to this content.