“Quaternionic” vector bundles are the objects that describe topological phases of quantum systems subjected to an odd time-reversal symmetry (class AII). In this work, we prove that the Furuta–Kametani–Matsue–Minami (FKMM) invariant provides the correct fundamental characteristic class for the classification of “Quaternionic” vector bundles in dimension less than or equal to three (low dimension). The new insight is provided by the interpretation of the FKMM invariant from the viewpoint of the Bredon equivariant cohomology. This fact, along with basic results in equivariant homotopy theory, allows us to achieve the expected result.
REFERENCES
1.
G.
De Nittis
and K.
Gomi
, “Classification of ‘Real’ Bloch-bundles: Topological insulators of type AI
,” J. Geom. Phys.
86
, 303
–338
(2014
).2.
G.
De Nittis
and K.
Gomi
, “Classification of ‘Quaternionic’ Bloch-bundles: Topological insulators of type AII
,” Commun. Math. Phys.
339
, 1
–55
(2015
).3.
G.
De Nittis
and K.
Gomi
, “The cohomological nature of the Fu–Kane–Mele invariant
,” J. Geom. Phys.
124
, 124
–164
(2018
).4.
G.
De Nittis
and K.
Gomi
, “The FKMM-invariant in low dimension
,” Lett. Math. Phys.
108
, 1225
–1277
(2018
).5.
G.
De Nittis
and K.
Gomi
, “Chiral vector bundles
,” Math. Z.
290
, 775
–830
(2018
).6.
G.
De Nittis
and K.
Gomi
, “The cohomology invariant for class DIII topological insulators
,” Ann. Henri Poincare
23
, 3587
–3632
(2022
).7.
J.-P.
Serre
, “Faisceaux algebriques coherents
,” Ann. Math.
61
, 197
–278
(1955
).8.
R. G.
Swan
, “Vector bundles and projective modules
,” Trans. Am. Math. Soc.
105
, 264
–277
(1962
).9.
F. P.
Peterson
, “Some remarks on Chern classes
,” Ann. Math.
69
, 414
–420
(1959
).10.
A.
Böhm
, A.
Mostafazadeh
, H.
Koizumi
, Q.
Niu
, and J.
Zwanziger
, The Geometric Phase in Quantum Systems
(Springer-Verlag
, Berlin
, 2003
).11.
D.
Chruściński
and A.
Jamiołkowski
, Geometric Phases in Classical and Quantum Mechanics
(Birkhäuser
, Basel
, 2004
).12.
M. V.
Berry
, “Quantal phase factors accompanying adiabatic changes
,” Proc. R. Soc. London, Ser. A
392
, 45
–57
(1984
).13.
S.
Pancharatnam
, “Generalized theory of interference, and its applications. Part I. Coherent pencils
,” Proc. - Indian Acad. Sci., Sect. A
44
, 247
–262
(1956
).14.
P. A. M.
Dirac
, “Quantised singularities in the electromagnetic field
,” Proc. R. Soc. London, Ser. A
133
, 60
–72
(1931
).15.
C. N.
Yang
, “Magnetic monopoles, fiber bundles, and gauge fields
,” in History of Original Ideas and Basic Discoveries in Particle Physics
(Springer
, Boston
, 1996
), pp. 55
–65
.16.
Y.
Aharonov
and D.
Bohm
, “Significance of electromagnetic potentials in quantum theory
,” Phys. Rev.
115
, 485
–491
(1959
).17.
M.
Baer
, Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections
(Wiley & Sons
, Hobokenn
, 2006
).18.
F.
Faure
and B.
Zhilinskii
, “Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum
,” Lett. Math. Phys.
55
, 219
–238
(2001
).19.
O.
Gat
and J. M.
Robbins
, “Topology of time-invariant energy bands with adiabatic structure
,” J. Phys. A: Math. Theor.
50
, 375203
(2017
).20.
N. W.
Ashcroft
and N. D.
Mermin
, Solid State Physics
(Saunders College Publishing
, Philadelphia
, 1976
).21.
P.
Kuchment
, Floquet Theory for Partial Differential Equations
(Birkhäuser
, Boston
, 1993
).22.
J.
Bellissard
, A.
van Elst
, and H.
Schulz-Baldes
, “The non-commutative geometry of the quantum Hall effect
,” J. Math. Phys.
35
, 5373
–5451
(1994
).23.
D. J.
Thouless
, M.
Kohmoto
, M. P.
Nightingale
, and M.
den Nijs
, “Quantized Hall conductance in a two-dimensional periodic potential
,” Phys. Rev. Lett.
49
, 405
–408
(1982
).24.
M. Z.
Hasan
and C. L.
Kane
, “Colloquium: Topological insulators
,” Rev. Mod. Phys.
82
, 3045
–3067
(2010
).25.
Y.
Ando
and L.
Fu
, “Topological crystalline insulators and topological superconductors: From concepts to materials
,” Annu. Rev. Condens. Matter Phys.
6
, 361
–381
(2015
).26.
E.
Prodan
and H.
Schulz-Baldes
, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
, Mathematical Physics Studies (Springer
, 2016
).27.
M. F.
Atiyah
, “K-theory and reality
,” Q. J. Math.
17
(1
), 367
–386
(1966
).28.
B.
Kahn
, “Construction de classes de Chern équivariantes pour un fibré vectoriel Réel
,” Commun. Algebra
15
, 695
–711
(1987
).29.
K.
Gomi
, “A variant of K-theory and topological T-duality for real circle bundles
,” Commun. Math. Phys.
334
, 923
–975
(2015
).30.
J. L.
Dupont
, “Symplectic bundles and KR-theory
,” Math. Scand.
24
, 27
–30
(1969
).31.
L.
Fu
, C. L.
Kane
, and E. J.
Mele
, “Topological insulators in three dimensions
,” Phys. Rev. Lett.
98
, 106803
(2007
).32.
C. L.
Kane
and E. J.
Mele
, “topological order and the quantum spin Hall effect
,” Phys. Rev. Lett.
95
, 146802
(2005
).33.
G. E.
Bredon
, Equivariant Cohomology Theories
, Lecture Notes in Mathematics Vol. 34 (Springer-Verlag
, Berlin; New York
, 1967
).34.
J. P.
May
, Equivariant Homotopy and Cohomology Theory
, CBMS Regional Conference Series in Mathematics Vol. 91, with contributions by M.
Cole
, G.
Comezaña
, S.
Costenoble
, A. D.
Elmendorf
, J. P. C.
Greenlees
, L. G.
Lewis
, Jr., R. J.
Piacenza
, G.
Triantafillou
, and S.
Waner
(AMS
, Providence
, 1996
).35.
S.
Illman
, “Equivariant singular homology and cohomology
,” Bull. Am. Math. Soc.
79
, 188
–192
(1973
).36.
P.
Freyd
, Abelian Categories. An Introduction to the Theory of Functors
(Harper & Row
, 1964
).37.
S.
Mac Lane
, Categories for the Working Mathematician
(Springer
, 1978
).38.
C.
Allday
and V.
Puppe
, Cohomological Methods in Transformation Groups
(Cambridge University Press
, Cambridge
, 1993
).39.
S.
Eilenberg
and N. E.
Steenrod
, Foundations of Algebraic Topology
(Princeton University Press
, 1952
).40.
41.
J. F.
Davis
and P.
Kirk
, Lecture Notes in Algebraic Topology
(AMS
, Providence
, 2001
).42.
M.
Furuta
, Y.
Kametani
, H.
Matsue
, and N.
Minami
, Stable-homotopy Seiberg-Witten invariants and pin bordisms, UTMS Preprint Series 2000, UTMS 2000-46, 2000
.43.
R.
Bott
and L. W.
Tu
, Differential Forms in Algebraic Topology
(Springer-Verlag
, Berlin
, 1982
).44.
45.
46.
R.
Jante
and B. J.
Schroers
, “Dirac operators on the Taub-NUT space, monopoles and SU(2) representations
,” J. High Energy Phys.
2014
, 114
.47.
H. M.
Bharath
, “Non-Abelian geometric phases carried by the spin fluctuation tensor
,” J. Math. Phys.
59
, 062105
(2018
).48.
A.
Borel
, Seminar on Transformation Groups
, Annals of Mathematics Studies Vol. 46, with contributions G.
Bredon
, E. E.
Floyd
, D.
Montgomery
, and R.
Palais
(Princeton University Press
, Princeton
, 1960
).49.
W. Y.
Hsiang
, Cohomology Theory of Topological Transformation Groups
(Springer-Verlag
, Berlin
, 1975
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.