“Quaternionic” vector bundles are the objects that describe topological phases of quantum systems subjected to an odd time-reversal symmetry (class AII). In this work, we prove that the Furuta–Kametani–Matsue–Minami (FKMM) invariant provides the correct fundamental characteristic class for the classification of “Quaternionic” vector bundles in dimension less than or equal to three (low dimension). The new insight is provided by the interpretation of the FKMM invariant from the viewpoint of the Bredon equivariant cohomology. This fact, along with basic results in equivariant homotopy theory, allows us to achieve the expected result.

1.
G.
De Nittis
and
K.
Gomi
, “
Classification of ‘Real’ Bloch-bundles: Topological insulators of type AI
,”
J. Geom. Phys.
86
,
303
338
(
2014
).
2.
G.
De Nittis
and
K.
Gomi
, “
Classification of ‘Quaternionic’ Bloch-bundles: Topological insulators of type AII
,”
Commun. Math. Phys.
339
,
1
55
(
2015
).
3.
G.
De Nittis
and
K.
Gomi
, “
The cohomological nature of the Fu–Kane–Mele invariant
,”
J. Geom. Phys.
124
,
124
164
(
2018
).
4.
G.
De Nittis
and
K.
Gomi
, “
The FKMM-invariant in low dimension
,”
Lett. Math. Phys.
108
,
1225
1277
(
2018
).
5.
G.
De Nittis
and
K.
Gomi
, “
Chiral vector bundles
,”
Math. Z.
290
,
775
830
(
2018
).
6.
G.
De Nittis
and
K.
Gomi
, “
The cohomology invariant for class DIII topological insulators
,”
Ann. Henri Poincare
23
,
3587
3632
(
2022
).
7.
J.-P.
Serre
, “
Faisceaux algebriques coherents
,”
Ann. Math.
61
,
197
278
(
1955
).
8.
R. G.
Swan
, “
Vector bundles and projective modules
,”
Trans. Am. Math. Soc.
105
,
264
277
(
1962
).
9.
F. P.
Peterson
, “
Some remarks on Chern classes
,”
Ann. Math.
69
,
414
420
(
1959
).
10.
A.
Böhm
,
A.
Mostafazadeh
,
H.
Koizumi
,
Q.
Niu
, and
J.
Zwanziger
,
The Geometric Phase in Quantum Systems
(
Springer-Verlag
,
Berlin
,
2003
).
11.
D.
Chruściński
and
A.
Jamiołkowski
,
Geometric Phases in Classical and Quantum Mechanics
(
Birkhäuser
,
Basel
,
2004
).
12.
M. V.
Berry
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. London, Ser. A
392
,
45
57
(
1984
).
13.
S.
Pancharatnam
, “
Generalized theory of interference, and its applications. Part I. Coherent pencils
,”
Proc. - Indian Acad. Sci., Sect. A
44
,
247
262
(
1956
).
14.
P. A. M.
Dirac
, “
Quantised singularities in the electromagnetic field
,”
Proc. R. Soc. London, Ser. A
133
,
60
72
(
1931
).
15.
C. N.
Yang
, “
Magnetic monopoles, fiber bundles, and gauge fields
,” in
History of Original Ideas and Basic Discoveries in Particle Physics
(
Springer
,
Boston
,
1996
), pp.
55
65
.
16.
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
17.
M.
Baer
,
Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections
(
Wiley & Sons
,
Hobokenn
,
2006
).
18.
F.
Faure
and
B.
Zhilinskii
, “
Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum
,”
Lett. Math. Phys.
55
,
219
238
(
2001
).
19.
O.
Gat
and
J. M.
Robbins
, “
Topology of time-invariant energy bands with adiabatic structure
,”
J. Phys. A: Math. Theor.
50
,
375203
(
2017
).
20.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College Publishing
,
Philadelphia
,
1976
).
21.
P.
Kuchment
,
Floquet Theory for Partial Differential Equations
(
Birkhäuser
,
Boston
,
1993
).
22.
J.
Bellissard
,
A.
van Elst
, and
H.
Schulz-Baldes
, “
The non-commutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
23.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
24.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
25.
Y.
Ando
and
L.
Fu
, “
Topological crystalline insulators and topological superconductors: From concepts to materials
,”
Annu. Rev. Condens. Matter Phys.
6
,
361
381
(
2015
).
26.
E.
Prodan
and
H.
Schulz-Baldes
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
, Mathematical Physics Studies (
Springer
,
2016
).
27.
M. F.
Atiyah
, “
K-theory and reality
,”
Q. J. Math.
17
(
1
),
367
386
(
1966
).
28.
B.
Kahn
, “
Construction de classes de Chern équivariantes pour un fibré vectoriel Réel
,”
Commun. Algebra
15
,
695
711
(
1987
).
29.
K.
Gomi
, “
A variant of K-theory and topological T-duality for real circle bundles
,”
Commun. Math. Phys.
334
,
923
975
(
2015
).
30.
J. L.
Dupont
, “
Symplectic bundles and KR-theory
,”
Math. Scand.
24
,
27
30
(
1969
).
31.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
, “
Topological insulators in three dimensions
,”
Phys. Rev. Lett.
98
,
106803
(
2007
).
32.
C. L.
Kane
and
E. J.
Mele
, “Z2
topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
33.
G. E.
Bredon
,
Equivariant Cohomology Theories
, Lecture Notes in Mathematics Vol. 34 (
Springer-Verlag
,
Berlin; New York
,
1967
).
34.
J. P.
May
,
Equivariant Homotopy and Cohomology Theory
, CBMS Regional Conference Series in Mathematics Vol. 91, with contributions by
M.
Cole
,
G.
Comezaña
,
S.
Costenoble
,
A. D.
Elmendorf
,
J. P. C.
Greenlees
,
L. G.
Lewis
, Jr.
,
R. J.
Piacenza
,
G.
Triantafillou
, and
S.
Waner
(
AMS
,
Providence
,
1996
).
35.
S.
Illman
, “
Equivariant singular homology and cohomology
,”
Bull. Am. Math. Soc.
79
,
188
192
(
1973
).
36.
P.
Freyd
,
Abelian Categories. An Introduction to the Theory of Functors
(
Harper & Row
,
1964
).
37.
S.
Mac Lane
,
Categories for the Working Mathematician
(
Springer
,
1978
).
38.
C.
Allday
and
V.
Puppe
,
Cohomological Methods in Transformation Groups
(
Cambridge University Press
,
Cambridge
,
1993
).
39.
S.
Eilenberg
and
N. E.
Steenrod
,
Foundations of Algebraic Topology
(
Princeton University Press
,
1952
).
40.
E. H.
Spanier
,
Algebraic Topology
(
McGraw-Hill
,
New York
,
1966
).
41.
J. F.
Davis
and
P.
Kirk
,
Lecture Notes in Algebraic Topology
(
AMS
,
Providence
,
2001
).
42.
M.
Furuta
,
Y.
Kametani
,
H.
Matsue
, and
N.
Minami
, Stable-homotopy Seiberg-Witten invariants and pin bordisms, UTMS Preprint Series 2000, UTMS 2000-46,
2000
.
43.
R.
Bott
and
L. W.
Tu
,
Differential Forms in Algebraic Topology
(
Springer-Verlag
,
Berlin
,
1982
).
44.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
Cambridge
,
2002
).
45.
M. F.
Atiyah
,
K-Theory
(
W. A. Benjamin
,
New York
,
1967
).
46.
R.
Jante
and
B. J.
Schroers
, “
Dirac operators on the Taub-NUT space, monopoles and SU(2) representations
,”
J. High Energy Phys.
2014
,
114
.
47.
H. M.
Bharath
, “
Non-Abelian geometric phases carried by the spin fluctuation tensor
,”
J. Math. Phys.
59
,
062105
(
2018
).
48.
A.
Borel
,
Seminar on Transformation Groups
, Annals of Mathematics Studies Vol. 46, with contributions
G.
Bredon
,
E. E.
Floyd
,
D.
Montgomery
, and
R.
Palais
(
Princeton University Press
,
Princeton
,
1960
).
49.
W. Y.
Hsiang
,
Cohomology Theory of Topological Transformation Groups
(
Springer-Verlag
,
Berlin
,
1975
).
You do not currently have access to this content.